

Hibernate Search
in Action

Hibernate Search
in Action

EMMANUEL BERNARD
JOHN GRIFFIN

M A N N I N G
Greenwich

(74° w. long.)

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact:

Special Sales Department
Manning Publications Co.
Sound View Court 3B fax: (609) 877-8256
Greenwich, CT 06830 email: orders@manning.com

©2009 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books are
printed on paper that is at least 15% recycled and processed without elemental chlorine.

Manning Publications Co. Development editor: Nermina Miller
Sound View Court 3B Copyeditor: Linda Recktenwald
Greenwich, CT 06830 Typesetter: Dottie Marsico

Cover designer: Leslie Haimes

ISBN 1-933988-64-9

Printed in the United States of America

1 2 3 4 5 6 7 8 9 10 – MAL – 14 13 12 11 10 09 08

http://www.manning.com
mailto:orders@manning.com

 To Iwona
 For her infinite support and patience.

 —EB

 To Judy, my wife
 Thank you for giving me up for a year.

 I love you forever.
 And to my buddies Clancy and Molly.

 —JG

contents
preface xv
acknowledgments xvii
about this book xix

PART 1 UNDERSTANDING SEARCH TECHNOLOGY........... 1

1 State of the art 3
1.1 What is search? 4

Categorizing information 5 ■ Using a detailed search screen 5
Using a user-friendly search box 7 ■ Mixing search strategies 7
Choosing a strategy: the first step on a long road 8

1.2 Pitfalls of search engines in relational databases 8
Query information spread across several tables 9 ■ Searching
words, not columns 9 ■ Filtering the noise 9 ■ Find by
words...fast 10 ■ Searching words with the same root and
meaning 11 ■ Recovering from typos 11 ■ Relevance 11
Many problems. Any solutions? 12

1.3 Full-text search: a promising solution 12
Indexing 13 ■ Searching 15 ■ Full-text search solutions 17
vii

CONTENTSviii
1.4 Mismatches between the round object world
and the flat text world 22
The structural mismatch 23 ■ The synchronization
mismatch 24 ■ The retrieval mismatch 25

1.5 Summary 26

2 Getting started with Hibernate Search 28
2.1 Requirements: what Hibernate Search needs 30
2.2 Setting up Hibernate Search 31

Adding libraries to the classpath 31 ■ Providing
configuration 34

2.3 Mapping the domain model 38
Indexing an entity 38 ■ Indexing properties 39

What if I don’t use Hibernate Annotations? 41

2.4 Indexing your data 42
2.5 Querying your data 43

Building the Lucene query 44 ■ Building the Hibernate
Search query 46 ■ Executing a Hibernate Search query 47

2.6 Luke: inside look into Lucene indexes 48
2.7 Summary 59

PART 2 ENDING STRUCTURAL AND
SYNCHRONIZATION MISMATCHES 61

3 Mapping simple data structures 63
3.1 Why do we need mapping, again? 64

Converting the structure 65 ■ Converting types 66
Defining the indexing strategy 67

3.2 Mapping entities 67
Marking an entity as indexed 67 ■ Subclasses 69
Mapping the primary key 71 ■ Understanding the index
structure 73

3.3 Mapping properties 75
Marking a property as indexed 75 ■ Built-in bridges 76
Choosing an indexing strategy 78 ■ Indexing the same property
multiple times 82

CONTENTS ix
3.4 Refining the mapping 83
Analyzers 83 ■ Boost factors 85

3.5 Summary 87

4 Mapping more advanced data structures 88
4.1 Mapping the unexpected: custom bridges 89

Using a custom bridge 91 ■ Writing simple custom bridges 93
Injecting parameters to bridges 97 ■ Writing flexible custom
bridges 99

4.2 Mapping relationships between entities 104
Querying on associations and full-text searching 104
Indexing embedded objects 107 ■ Indexing associated
objects 110

4.3 Summary 114

5 Indexing: where, how, what, and when 115
5.1 DirectoryProvider: storing the index 117

Defining a directory provider for an entity 117 ■ Using a
 filesystem directory provider 118 ■ Using an in-memory
directory provider 119 ■ Directory providers and
clusters 120 ■ Writing you own directory provider 124

5.2 Analyzers: doors to flexibility 125
What’s the job of an analyzer? 125 ■ Must-have
analyzers 128 ■ Indexing to cope with approximative
search 130 ■ Searching by phonetic approximation 131
Searching by synonyms 133 ■ Searching by words from
the same root 134 ■ Choosing a technique 139

5.3 Transparent indexing 139
Capturing which data has changed 140 ■ Indexing the
changed data 141 ■ Choosing the right backend 144
Extension points: beyond the proposed architectures 148

5.4 Indexing: when transparency is not enough 151
Manual indexing APIs 151 ■ Initially indexing a data
set 153 ■ Disabling transparent indexing: taking control 156

5.5 Summary 158

CONTENTSx
PART 3 TAMING THE RETRIEVAL MISMATCH............... 159

6 Querying with Hibernate Search 161
6.1 Understanding the query paradigm 162

The burdens of using Lucene by hand 162 ■ Query mimicry 163
Getting domain objects from a Lucene query 164

6.2 Building a Hibernate Search query 166
Building a FullTextSession or a FullTextEntityManager 166
Creating a FullTextQuery 168 ■ Limiting the types of matching
entities 171

6.3 Executing the full-text query 175
Returning a list of results 176 ■ Returning an iterator on the
results 177 ■ Returning a scrollable result set 178 ■ Returning
a single result 181

6.4 Paginating through results and finding the total 183
Using pagination 184 ■ Retrieving the total number of
results 186 ■ Multistage search engine 187

6.5 Projection properties and metadata 188
6.6 Manipulating the result structure 191
6.7 Sorting results 194
6.8 Overriding fetching strategy 196
6.9 Understanding query results 198

6.10 Summary 199

7 Writing a Lucene query 201
7.1 Understanding Lucene’s query syntax 202

 Boolean queries—this and that but not those 203 ■ Wildcard
queries 206 ■ Phrase queries 207 ■ Fuzzy queries—similar
terms (even misspellings) 208 ■ Range queries—from
x TO y 209 ■ Giving preference with boost 210 ■ Grouping
queries with parentheses 211 ■ Getting to know the standard
QueryParser and ad hoc queries 212

7.2 Tokenization and fields 214
Fields/properties 214 ■ Tokenization 215 ■ Analyzers and
their impact on queries 216 ■ Using analyzers during
indexing 216 ■ Manually applying an analyzer to a query 219
Using multiple analyzers in the same query 221

CONTENTS xi
7.3 Building custom queries programmatically 224
Using Query.toString() 224 ■ Searching a single field for
a single term: TermQuery 225 ■ MultiFieldQueryParser
queries more than one field 228 ■ Searching words by
proximity: PhraseQuery 231 ■ Searching for more:
WildcardQuery, PrefixQuery 234 ■ When we’re not sure:
FuzzyQuery 237 ■ Searching in between: RangeQuery 240
A little of everything: BooleanQuery 244 ■ Using the boost
APIs 247

7.4 Summary 249

8 Filters: cross-cutting restrictions 251
8.1 Defining and using a filter 252

Lucene filter 253 ■ Declaring a filter in Hibernate
Search 255 ■ Applying filters to a query 259

8.2 Examples of filter usage and their implementation 261
Applying security 261 ■ Restricting results to a given
range 264 ■ Searching within search results 267 ■ Filter
results based on external data 269

8.3 Summary 271

PART 4 PERFORMANCE AND SCALABILITY................... 273

9 Performance considerations 275
9.1 Optimizing indexing 276

What influences indexing time for a single entity 276
 Optimizing many concurrent indexing
operations 277 ■ Optimizing mass indexing 279

9.2 Optimizing searches 282
Optimizing the way you write queries 282
Maximizing benefits from the caching mechanisms 286

9.3 Optimizing the index structure 288
Running an optimization 289 ■ Tuning index structures
and operations 292

9.4 Sharding your indexes 294
Configuring sharding 296 ■ Choosing how to shard your
data 297

CONTENTSxii
9.5 Testing your Hibernate Search application 303
Mocking Hibernate Search 303 ■ Testing with an in-memory
index and database 305 ■ Performance testing 308
Testing users 308

9.6 Summary 309

10 Scalability: using Hibernate Search in a cluster 310
10.1 Exploring clustering approaches 311

Synchronous clustering 311 ■ Asynchronous clustering 314

10.2 Configuring slave nodes 318
Preparing the backend 319 ■ Preparing the directory
providers 321

10.3 Configuring the master node 322
Building the message consumer 322 ■ Preparing the master
queue 324 ■ Preparing the directory providers 325

10.4 Summary 326

11 Accessing Lucene natively 327
11.1 Getting to the bottom of Hibernate Search 328

Accessing a Lucene directory 328 ■ Obtaining DirectoryProviders
from a non-sharded entity 330 ■ And now for sharding one entity
into two shards 332 ■ Indexing two non-sharded entities 335
Shoehorning multiple entities into one index (merging) 337

11.2 Obtaining and using a Lucene IndexReader
within the framework 342

11.3 Writing a DirectoryProvider your way 343
11.4 Projecting your will on indexes 347
11.5 Summary 350

PART 5 NATIVE LUCENE, SCORING,
AND THE WHEEL ... 351

12 Document ranking 353
12.1 Scoring documents 354

 Introducing the vector space model 354 ■ Normalizing document
length to level the playing field 359 ■ Minimizing large term count
effects 361

CONTENTS xiii
12.2 Exploring Lucene’s scoring approach
and the DefaultSimilarity class 364

DefaultSimilarity examples 366 ■ Query boosting 375

12.3 Scoring things my way 378
Modifying a query’s Weight class 380 ■ Revisiting the Scorer
class 384 ■ Is it worth it? 385

12.4 Document relevance 386
Understanding Precision vs. Recall 386 ■ Measuring a system’s
relevance accurately 387 ■ Document feedback: tell me what you
want! 388 ■ Improving relevance with MoreLikeThis 393

12.5 Summary 398

13 Don’t reinvent the wheel 399
13.1 Playing in the Sandbox 400

Making results stand out with the term Highlighter class 400
Modifying a score the easy way with BoostingQuery 404 ■ But I
was querying for “flick” utilizing a synonym search 409
Implementing regular expression searches and querying for
“sa.[aeiou]s.*” 412 ■ Utilizing a spellchecker 415

13.2 Making use of third-party contributions 418
Utilizing PDFBox to index PDF documents 418 ■ Indexing
Microsoft Word files with POI 425 ■ Indexing a simple text
file 427

13.3 Processing XML 429
Parsing with SAX 430 ■ Parsing with the DOM 434
Pros and cons of the different methods 438

13.4 Summary 440

appendix Quick reference 441
index 451

preface
I joined an e-commerce company in 2000, nothing unusual I suppose. We were quite
annoyed by the quality of Amazon’s search engine results compared to ours. A few
years later, we reimplemented our search engine from scratch using Lucene. That’s
where I learned that a good search engine is 50% kick-ass technology and 50% deep
understanding of the business and the users you serve. Then I sailed different seas
and joined the Hibernate team and, later on, JBoss Inc.

 It must be Destiny that a few years later I worked on unifying Hibernate and
Lucene. Hibernate Search’s design has been influenced by the work on Java Persis-
tence and JBoss Seam: ease of use, domain model-centric, annotation-driven and
focused on providing a unified experience to the developer. Hibernate Search brings
full-text search to Hibernate application without programmatic shift or infrastruc-
tural code.

 Search is now a key component of our digital life (Google, Spotlight, Amazon,
Facebook). Virtually every website, every application, has to provide a human-friendly,
word-centric search. While Google addresses the internet, Spotlight searches your
desktop files, Amazon focuses on products, and Facebook finds people. I firmly
believe Lucene’s flexibility is a key differentiator for developers building business-cen-
tric search engines. This has also influenced the design on Hibernate Search: While
Hibernate Search relieves you of the burdens of indexing and retrieving objects, we
made sure that all the flexibility of Lucene is accessible to you, especially when you
build queries.
xv

PREFACExvi
 I am thrilled to see the rapidly growing community around Hibernate Search and
nothing is more rewarding than hearing people saying: “I wish I knew about Hiber-
nate Search six months ago.”

 EMMANUEL BERNARD

At JavaOne 2007 I attended a presentation titled “Google Your Database!” and heard
Emmanuel present his full-text search framework Hibernate Search. I had been work-
ing with Lucene, Hibernate Search’s engine, for over a year and a half and when
Emmanuel invited anyone to help collaborate, I jumped. After Emmanuel’s presenta-
tion we had time only to exchange email addresses. That was the last time I saw him in
person until JavaOne 2008 where we at least got to hang out together for an evening.
Email and IM are amazing things.

 We have two other active project committers now and I have to admit it never
ceases to amaze me that four people: Emmanuel in Atlanta, Georgia; myself in a little
town in Utah; Sanne Grinovero in Rome, Italy; and Hardy Ferentschik in Stockholm,
Sweden, can produce and maintain a framework like Hibernate Search.

 JOHN GRIFFIN

acknowledgments
We never really like to enumerate names because invariably someone is left off the list
and may be offended, but for a work of this magnitude anything less would be a disser-
vice to the individuals.

■ Nermina Miller —I remember thinking–a long time ago it seems–-“We have to
have what?!?! by when?!?! But we finished ahead of schedule and no small
thanks to you. You are an amazing psychologist who managed to get the best
out of us.

■ Michael Stephens—I remember our first phone call where we talked for a good
hour about full-text search and how it is changing the world we know. Thanks
for inviting us to write this book.

■ Sanne Grinovero—Not only are you an excellent contributor to Hibernate
Search but one of the most tireless technical proofreaders I have ever met. Do
you ever sleep?

■ Elizabeth Martin—You kept us moving even through corrupted files, were a plea-
sure to work with, and have the coolest email address I have seen in a long time.

■ Karen Tegtmeyer—I really do not know how you handle the pressure of getting
reviewers, not just for us but for the many other Manning books. The range of
knowledge and selection of people that reviewed our book was a direct cause of
our not slacking in any way during our writing. What do you threaten these peo-
ple with to get them to actually turn in their reviews? And then some of them
come back and do it again?!
xvii

ACKNOWLEDGMENTSxviii
■ All of the Reviewers—Thank you very much to: Erik Hatcher, Otis Gospod-
netic̀, Hung Tang, Alberto Lagna, Frank Wang, Grant Ingersoll, Aaron Walker,
Andy Dingley, Ayende Rahien, Michael McCandless, Patrick Dennis, Peter Pavo-
lovich, Richard Brewter, Robert Hanson, Roger D. Cornejo, Spencer Stejskal,
Davide D’Alto, Deepak Vohra, Hardy Ferentschik, Keith Kin, David Grossman,
Costantino Cerbo, and Daniel Hinojosa. You kept us honest and did not let any-
thing slip through. You improved the book a great deal.

■ The MEAP Contributors—This was one of the most interesting parts of writing
this book. We had a very active MEAP and it really helps to know that there are a
lot of people interested in what you are doing and are hungry for information
on your work.

■ All the contributors and users of Hibernate Search. This book would be mean-
ingless without you.

Emmanuel would also like to thank his fellows and friends at JBoss--Sacha Labourey,
Gavin King and Christian Bauer--for warning him that writing a book will be harder
than he can imagine (they were dead on), but nevertheless letting him do it. Many
thanks to Bruno Georges, his manager, for supporting him on this endeavor all along.
Bruno has a rare quality as a manager: Present when you need him, out of your way
the rest of the time. Emmanuel also thanks Hardy Ferentschik and Sanne Grinovero
for pushing Hibernate Search 3.1 out while he was working on the book. He sends a
special thanks to Iwona who literally supported him during this whole year and to his
parents, they know why.

 John would also like to thank Spencer Stejskal for having a math degree and agree-
ing to review chapter 12. This Bud, eh, I mean that chapter is dedicated to you. In
addition, Professor David Grossman of the Illinois Institute of Technology was
extremely gracious to allow us to use his “gold silver truck” example to aid in the
explanation of document ranking. He would also like to again thank Hardy Ferents-
chik and Sanne Grinovero for being patient with him and Emmanuel for allowing
him to be his co-author.

about this book
Hibernate Search is a library providing full-text search capabilities to Hibernate. It
opens doors to more human friendly and efficient search engines while still following
the Hibernate and Java Persistence development paradigm. This library relieves you
of the burdens of keeping indexes up to date with the database, converts Lucene
results into managed objects of your domain model, and eases the transition from a
HQL-based query to a full-text query. Hibernate Search also helps you scale Lucene in
a clustered environment.

 Hibernate Search in Action aims not only at providing practical knowledge of Hiber-
nate Search but also uncovering some of the background behind Hibernate Search’s
design.

 We will start by describing full-text search technology and why this tool is invalu-
able in your development toolbox. Then you will learn how to start with Hibernate
Search, how to prepare and index your domain model, how to query your data. We
will explore advanced concepts like typo recovery, phonetic approximation, and
search by synonym. You will also learn how to improve performance when using
Hibernate Search and use it in a clustered environment. The book will then guide you
to more advanced Lucene concepts and show you how to access Lucene natively in
case Hibernate Search does not cover some of your needs. We will also explore the
notion of document scoring and how Lucene orders documents by relevance as well
as a few useful tools like term highlighters.

 Even though this is an “in Action” book, the authors have included a healthy
amount of theory on most of the topics. They feel that it is not only important to know
xix

ABOUT THIS BOOKxx
“how” but also “why.” This knowledge will help you better understand the design of
Hibernate Search. This book is a savant dosage of theory, reference on Hibernate
Search and practical knowledge. The latter is the meat of this book and is lead by
practical examples.

 After reading it, you will be armed with sufficient knowledge to use Hibernate
Search in all situations.

How to use this book

While this book can be read from cover to cover, we made sure you can read the sec-
tions you are interested independently from the others. Feel free to jump to the sub-
ject you are most interested in. Chapter 2, which you should read first, will give you an
overview of Hibernate Search and explain how to set it up. Check the road map sec-
tion which follows for an overview of Hibernate Search in Action.

 Most chapters start with background and theory on the subject they are covering,
so feel free to jump straight to the practical knowledge if you are not interested in the
introduction. You can always return to the theory.

Who should read this book

This book is aimed at any person wanting to know more about Hibernate Search and
full-text search in general. Any person curious to understand what full text search
technology can bring to them and what benefits Hibernate Search provides will be
interested.

 Readers looking for a smooth and practical introduction to Hibernate Search will
appreciate the step-by-step introduction of each feature and its concrete examples.

 The more advanced architect will find sections describing concepts and features
offered by Hibernate Search as well as the chapter about clustering to be of interest.

 The regular Hibernate Search users will enjoy in-depth descriptions of each sub-
ject and the ability to jump to the chapter covering the subject they are interested in.
They will also appreciate the chapter focusing on performance optimizations.

 The search guru will also enjoy the advanced chapters on Lucene describing scor-
ing, access to the native Lucene APIs from Hibernate Search, and the Lucene contri-
bution package.

 Developers or architects using or willing to use Hibernate Search on their project
will find useful knowledge (how-to, practical examples, architecture recommenda-
tions, optimizations).

 It is recommended to have basic knowledge of Hibernate Core or Java Persistence
but some reviewers have read the book with no knowledge of Hibernate, some with
knowledge of the .Net platform, and found the book useful.

ABOUT THIS BOOK xxi
Roadmap

In the first part of the book, we introduce full-text search and Hibernate Search.
 Chapter 1 describes the weakness of SQL as a tool to answer human queries and

describes full-text search technology. This chapter also describes full-text search
approaches, the issues with integrating them in a classic Java SE/EE application and
why Hibernate Search is needed.

 Chapter 2 is a getting started guide on Hibernate Search. It describes how to set up
and configure it in a Java application, how to define the mapping in your domain
model. It then describes how Hibernate Search indexes objects and how to write full-
text queries. We also introduce Luke, a tool to inspect Lucene indexes.

PART 2 focuses on mapping and indexing.
 Chapter 3 describes the basics of domain model mapping. We will walk you

through the steps of marking an entity and a property as indexed. You will understand
the various mapping strategies.

 Chapter 4 goes a step further into the mapping possibilities. Custom bridges are
introduced as well as mapping of relationships.

 Chapter 5 introduces where and how Hibernate Search indexes your entities. We
will learn how to configure directory providers (the structure holding index data),
how to configure analyzers and what feature they bring (text normalization, typo
recovery, phonetic approximation, search by synonyms and so on). Then we will see
how Hibernate Search transparently indexes your entities and how to take control
and manually trigger such indexing.

PART 3 of Hibernate Search in Action covers queries.
 Chapter 6 covers the programmatic model used for queries, how it integrates into

the Hibernate model and shares the same persistence context. You will also learn how
to customize queries by defining pagination, projection, fetching strategies, and so on.

 Chapter 7 goes into the meat of full-text queries. It describes what is expressible in
a Lucene query and how to do it. We start by using the query parser, then move on to
the full programmatic model. At this stage of the book, you will have a good under-
standing of the tools available to you as a search engine developer.

 Chapter 8 describes Hibernate Search filters and gives examples where cross-cut-
ting restrictions are useful. You will see how to best benefit from the built-in cache and
explore use cases such as security filtering, temporal filtering, and category filtering.

PART 4 focuses on performance and scalability.
 Chapter 9 brings in one chapter all the knowledge related to Hibernate Search

and Lucene optimization. All areas are covered: indexing, query time, index struc-
ture, and index sharding.

ABOUT THIS BOOKxxii
 Chapter 10 describes how to cluster a Hibernate Search application. You will
understand the underlying problems and be introduced to various solutions. The ben-
efits and drawbacks of each will be explored. This chapter includes a full configura-
tion example.

PART 5 goes beyond Hibernate Search and explores advanced knowledge of Lucene.
 Chapter 11 describes ways to access the native Lucene APIs when working with

Hibernate Search. While this knowledge is not necessary in most applications, it can
come in handy in specific scenarios.

 Chapter 12 takes a deep dive into Lucene scoring. If you always wanted to know
how a full-text search engine order results by relevance, this chapter is for you. This
will be a gem if you need to customize the scoring algorithm.

 Chapter 13 gives you an introduction to some of Lucene’s contribution projects
like text highlighting, spell checking, and so on.

Code conventions

All source code in listings and in text is in a fixed-width font just like this to
separate it from normal text. Additionally, Java class names, method names, and
object properties are also presented using fixed-width font. Java method names gener-
ally don’t include the signature (the list of parameter types).

 In almost all cases the original source code has been reformatted; we’ve added line
breaks and reworked indentation to fit page space in the book. It was even necessary
occasionally to add line continuation markers.

 Annotations accompany all of the code listings and are followed by numbered bul-
lets, also known as cueballs, which are linked to explanations of the code.

Code downloads

Hibernate Search and Hibernate Core are open source projects released under the
Lesser GNU Public License 2.1. You can download the latest versions (both source and
binaries) at http://www.hibernate.org.

 Apache Lucene is an open source project from the Apache Software Foundation
released under the Apache Public License 2.0. Lucene JARs are included in the Hiber-
nate Search distribution but you can download additional contributions, documenta-
tion and the source code at http://lucene.apache.org.

 The source code used in this book as well as various online resources are freely
available at http://book.emmanuelbernard.com/hsia or from a link on the pub-
lisher’s website at http://www.manning.com/HibernateSearchinAction

Author Online

Purchase of Hibernate Search in Action includes free access to a private web forum run
by Manning Publications where you can make comments about the book, ask techni-
cal questions, and receive help from the lead author and from other users. To access

http://www.hibernate.org
http://www.hibernate.org
http://lucene.apache.org
http://lucene.apache.org
http://book.emmanuelbernard.com/hsia
http://www.manning.com/HibernateSearchinAction
http://www.manning.com/HibernateSearchinAction
http://www.manning.com/HibernateSearchinAction

ABOUT THIS BOOK xxiii
the forum and subscribe to it, point your web browser to http://www.manning.com/
HibernateSearchinAction or http://www.manning.com/bernard. This page provides
information on how to get on the forum once you’re registered, what kind of help is
available, and the rules of conduct on the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialog between individual readers and between readers and the authors can take
place. It’s not a commitment to any specific amount of participation on the part of the
authors, whose contribution to the AO remains voluntary (and unpaid). We suggest
you try asking the authors some challenging questions lest their interest stray!

 The Author Online forum and the archives of previous discussions will be accessi-
ble from the publisher’s website as long as the book is in print.

About the authors

EMMANUEL BERNARD graduated from Supelec (French “Grande Ecole”) then
spent a few years in the retail industry as a developer and architect. That’s where he
started to be involved in the ORM space. He joined the Hibernate team in 2003 and is
now a lead developer at JBoss, a division of Red Hat.

 Emmanuel is the cofounder and lead developer of Hibernate Annotations and
Hibernate EntityManager (two key projects on top of Hibernate Core implementing
the Java Persistence(tm) specification) and more recently Hibernate Search and
Hibernate Validator.

 Emmanuel is a member of the JPA 2.0 expert group and the spec lead of JSR 303:
Bean Validation. He is a regular speaker at various conferences and JUGs, including
JavaOne, JBoss World and Devoxx.

JOHN GRIFFIN has been in the software and computer industry in one form or
another since 1969. He remembers writing his first FORTRAN IV program in a magic
bus on his way back from Woodstock. Currently, he is the software engineer/architect
for SOS Staffing Services, Inc. He was formerly the lead e-commerce architect for
Iomega Corporation, lead SOA architect for Realm Systems and an independent con-
sultant for the Department of the Interior among many other callings.

 John has even spent time as an adjunct university professor. He enjoys being a
committer to projects because he believes “it's time to get involved and give back to
the community.”

 John is the author of XML and SQL Server 2000 published by New Riders Press in
2001 and a member of the ACM. John has also spoken at various conferences and JUGs.

 He resides in Layton, Utah, with wife Judy and their Australian Shepherds Clancy
and Molly.

http://www.manning.com/HibernateSearchinAction

ABOUT THIS BOOKxxiv
About the title

By combining introductions, overviews, and how-to examples, the In Action books are
designed to help learning and remembering. According to research in cognitive sci-
ence, the things people remember are things they discover during self-motivated
exploration.

 Although no one at Manning is a cognitive scientist, we are convinced that for
learning to become permanent it must pass through stages of exploration, play, and,
interestingly, retelling of what is being learned. People understand and remember
new things, which is to say they master them, only after actively exploring them.
Humans learn in action. An essential part of an In Action guide is that it is example-
driven. It encourages the reader to try things out, to play with new code, and explore
new ideas.

 There is another, more mundane, reason for the title of this book: our readers are
busy. They use books to do a job or to solve a problem. They need books that allow
them to jump in and jump out easily and learn just what they want just when they want
it. They need books that aid them in action. The books in this series are designed for
such readers.

About the cover illustration

The illustration on the cover of Hibernate Search in Action is captioned “Scribe” and is
taken from the 1805 edition of Sylvain Maréchal’s four-volume compendium of regional dress
customs. This book was first published in Paris in 1788, one year before the French Revolution.
Each illustration is colored by hand.

 The colorful variety of Maréchal’s collection reminds us vividly of how culturally
apart the world’s towns and regions were just 200 years ago. Isolated from each other,
people spoke different dialects and languages. In the streets or the countryside, they
were easy to place—sometimes with an error of no more than a dozen miles—just by
their dress. Dress codes have changed everywhere with time and the diversity by
region, so rich at the time, has faded away. It is now hard to tell apart the inhabitants
of different continents, let alone different towns or regions. Perhaps we have traded
cultural diversity for a more varied personal life—certainly a more varied and faster-
paced technological life.

 At a time when it is hard to tell one computer book from another, Manning cele-
brates the inventiveness and initiative of the computer business with book covers
based on the rich diversity of regional life of two centuries ago, brought back to life by
Maréchal’s pictures.

Part 1

Understanding
Search Technology

In the first two chapters of Hibernate Search in Action, you will discover the
place of search in modern applications, the different solutions at your disposal,
and their respective strengths. Chapter 1 covers the reasons behind the need for
search, introduces the concepts behind full-text search, and describes the types
of full-text search solutions available. Going closer to the Java developer's mind,
chapter 1 also explains some of the problems that arise with integrating the
object-oriented domain model and full-text search. Once you are equipped with
this background, chapter 2 will guide you through your first steps with Hiber-
nate Search.

 After reading this part of the book, you will understand the concepts behind
full-text search and benefits of this technology. You will also discover some
issues that may arise when integrating full-text search in an object-oriented
world and will learn how to set up and start using Hibernate Search in your Java
applications.

State of the art
Search is a quite vague notion involving machine processes, human processes,
human thoughts, and even human feelings. As vague as it is, search is also a manda-
tory functionality in today’s applications, especially since we’re exposed to and have
access to much more information than we used to. Since the exposure rate doesn’t
seem to slow down these days, searching efficiently, or should we say finding effi-
ciently, becomes a discriminatory element among applications, systems, and even
humans. It’s no wonder your customers or your users are all about searching.

 Unfortunately, integrating efficient search solutions into our daily applications
isn’t an easy task. In Java applications, where the domain model of your business is
described by an object model, it can be particularly tricky to provide “natural”
search capabilities without spending a lot of time on complex plumber code.
Without breaking the suspense of this chapter, we’ll just say that Hibernate Search

This chapter covers
■ The need for search in modern applications
■ Full-text search concepts
■ Full-text search solutions
3

4 CHAPTER 1 State of the art
helps you build advanced search functionalities in Java-based applications (functional-
ities that will not shy against the big contenders in this field like Google or Yahoo!).
But even more important, it relieves the application developer from the burdens of
infrastructure and glue code and lets him focus on what matters in the end, optimiz-
ing the search queries to return the best possible information.

 Before jumping into the details of Hibernate Search, we want you to understand
where it comes from and why this project was needed. This chapter will help you
understand what search means today when speaking about interacting with an infor-
mation system (whether it be a website, a backend application, or even a desktop).
We’ll explore how various technologies address the problem. You’ll be able to under-
stand where Hibernate Search comes from and what solutions it provides. Take a com-
fortable position, relax, and enjoy the show.

1.1 What is search?
Search: transitive verb. To look into or over carefully or thoroughly in an effort to
find or discover something.

Whenever users interact with an information system, they need to access information.
Modern information systems tend to give users access to more and more data. Know-
ing precisely where to find what you’re looking for is the edge case of search, and you
have practically no need for a search function in this situation. But most of the time,
where and what are blurrier. Of course, before knowing where to look, you need to
have a decent understanding of what you’re looking for.

 Surprisingly, some users barely know what they’re looking for; they have vague
(sometimes unorganized) ideas or partial information and seek help and guidance
based on this incomplete knowledge. They seek ways to refine their search until they
can browse a reasonably small subset of information. Too much information and the
gem are lost in the flow of data; too little and the gem might have been filtered out.

 Depending on typical system usage, the search feature (or let’s call it the reach fea-
ture) will have to deal with requests where what is looked for is more or less clear in
the user’s mind. The clearer it is, the more important it is for the results to be
returned by relevance.

NOTE WHAT IS RELEVANCE? Relevance is a barbarian word that simply means
returning the information considered the most useful at the top of a
result list. While the definition is simple, getting a program to compute
relevance is not a trivial task, mainly because the notion of usefulness is
hard for a machine to understand. Even worse, while most humans will
understand what usefulness means, most will disagree on the practical
details. Take two persons in the street, and the notion of usefulness will
differ slightly. Let’s look at an example: I’m a customer of a wonderful
online retail store and I’m looking for a “good reflex camera.” As a cus-
tomer, I’m looking for a “good reflex camera” at the lowest possible
price, but the vendor might want to provide me with a “good reflex

5What is search?
camera” at the highest retail margin. Worst-case scenario, the informa-
tion system has no notion of relevance, and the end user will have to
order the data manually.

Even when users know precisely what they’re looking for, they might not precisely
know where to look and how to access the information. Based on the what, they expect
the information system to provide access to the exact data as efficiently and as fast as
possible with as few irrelevant pieces as possible. (This irrelevant information is some-
times called noise.)

 You can refine what you’re looking for in several ways. You can categorize informa-
tion and display it as such, you can expose a detailed search screen to your user, or you
can expose a single-search text box and hide the complexity from the user.

1.1.1 Categorizing information

One strategy is to categorize information up front. You can see a good example of this
approach in figure 1.1. The online retail website Amazon provides a list of depart-
ments and subdepartments that the visitor can go through to direct her search.

 The categorization is generally done by business experts during data insertion.
The role of the business expert is to anticipate searches and define an efficient cate-
gory tree that will match the most common requests. There are several drawbacks
when using this strategy:

■ Predefined categories might not match the search criteria or might not match
the mindset of the user base. I can navigate pretty efficiently through the moun-
tain of papers on my desk and floor because I made it, but I bet you’d have a
hard time seeing any kind of categorization.

■ Manual categorization takes time and is nearly impossible when there’s too
much data.

However, categorization is very beneficial if the user has no predefined idea because it
helps her to refine what she’s looking for. Usually categorization is reflected as a navi-
gation system in the application. To make an analogy with this book, categories are
the table of contents. You can see a category search in action figure 1.1.

 Unfortunately, this solution isn’t appropriate for all searches and all users. An
alternative typical strategy is to provide a detailed search screen with various criteria
representing field restrictions (for example, find by word and find by range).

1.1.2 Using a detailed search screen

A detailed search screen is very useful when the user knows what to look for. Expert
users especially appreciate this. They can fine-tune their query to the information sys-
tem. Such a solution is not friendly to beginner or average users, especially users
browsing the internet. Users who know what they are looking for and know pretty well
how data is organized will make the most out of this search mode (see, for example,
the Amazon.com book search screen in figure 1.2).

6 CHAPTER 1 State of the art
For beginners, a very simple search interface is key. Unfortunately it does add a lot of
complexity under the hood because a simple user interface has to “guess” the user’s
wishes. A third typical strategy is to provide a unique search box that hides the com-
plexity of the data (and data model) and keeps the user free to express the search
query in her own terms.

Figure 1.1 Searching by category at Amazon.com. Navigating across the departments
and subdepartments helps the user to structure her desires and refine her search.

Figure 1.2 A detailed search screen exposes advanced and fine-grained functionalities to the user
interface. This strategy doesn’t fit beginners very well.

7What is search?
1.1.3 Using a user-friendly search box

A search box, when properly implemented, provides a better user experience for both
beginning and average users regardless of the qualification of their search (that is,
whether the what is vaguely or precisely defined). This solution puts a lot more pres-
sure on the information system: Instead of having the user use the language of the sys-
tem, the system has to understand the language of the user. Proceeding with our book
analogy, such a solution is the 21st-century version of a book index. See the Search
box at Amazon.com in figure 1.3.

While very fashionable these days, this simple approach has its limits and weaknesses.
The proper approach is usually to use a mix of the previous strategies, just like Ama-
zon.com does.

1.1.4 Mixing search strategies

These strategies are not mutually exclusive; au contraire, most information systems
with a significant search feature implement these three strategies or a mix or varia-
tion of them.

 While not always consciously designed as such by its designer, a search feature
addresses the where problem. A user trying to access a piece of information through an
information system will try to find the fastest or easiest possible way. Application
designers may have provided direct access to the data through a given path that
doesn’t fit the day-to-day needs of their users. Often data is exposed by the way it’s
stored in the system, and the access path provided to the user is the easiest access path
from an information system point of view. This might not fit the business efficiently.
Users will then work around the limitation by using the search engine to access infor-
mation quickly.

 Here’s one example of such hidden usage. In the book industry, the common
identifier is the ISBN (International Standard Book Number). Everybody uses this
number when they want to share data on a given book. Emmanuel saw a backend
application specifically designed for book industry experts, where the common way to
interact on a book was to share a proprietary identifier (namely, the database primary
key value in the company’s datastore). The whole company interaction process was
designed around this primary key. What the designers forgot was that book experts
employed by this company very often have to interact outside the company boundar-
ies. It turned out that instead of sharing the internal identifiers, the experts kept using

Figure 1.3 Using one search box gives freedom of expression to users but
introduces more complexity and work to the underlying search engine.

8 CHAPTER 1 State of the art
the ISBN as the unique identifier. To convert the ISBN into the internal identifier, the
search engine was used extensively as a palliative. It would have been better to expose
the ISBN in the process and hide the internal identifier for machine consumption,
and this is what the employees of this company ended up doing.

1.1.5 Choosing a strategy: the first step on a long road

Choosing one or several strategies is only half the work though, and implementing
them efficiently can become fairly challenging depending on the underlying technol-
ogy used. In most Java applications, both simple text-box searches and detailed screen
searches are implemented using the request technology provided by the data store.
The data store being usually a relational database management system, an SQL query
is built from the query elements provided by the user (after a more or less sophisti-
cated filtering and adjustment algorithm). Unfortunately, data source query technolo-
gies often do not match user-centric search needs. This is particularly true in the case
of relational databases.

1.2 Pitfalls of search engines in relational databases
SQL (Structured Query Language) is a fantastic tool for retrieving information. It
especially shines when it comes to restricting columns to particular values or ranges of
values and expressing data aggregation. But is it the right tool to use to find informa-
tion based on user input?

 To answer this question, let’s look at an example and see the kind of input a user
can provide and how an SQL-based search engine would deal with it. A user is looking
for a book at her favorite online store. The online store uses a relational database to
store the books catalog. The search engine is entirely based on SQL technology. The
search box on the upper right is ready to receive the user’s request:

"a book about persisting objects with ybernate in Java"

A relational database groups information into tables, each table having one or several
columns.

 A simple version of the website could be represented by the following model:

■ A Book table containing a title and a description
■ An Author table containing a first name and a last name
■ A relation between books and their authors

Thanks to this example, we’ll be able to uncover typical problems arising on the way
to building an SQL-based search engine. While this list is by no mean complete, we’ll
face the following problems:

■ Writing complex queries because the information is spread across several tables
■ Converting the search query to search words individually
■ Keeping the search engine efficient by eliminating meaningless words (those

that are either too common or not relevant)

9Pitfalls of search engines in relational databases
■ Finding efficient ways to search a given word as opposed to a column value
■ Returning results matching words from the same root
■ Returning results matching synonymous words
■ Recovering from user typos and other approximations
■ Returning the most useful information first

Let’s now dive into some details and start with the query complexity problem.

1.2.1 Query information spread across several tables

Where should we look for the search information our user has requested? Realisti-
cally, title, description, first name, and last name potentially contain the information
the user could base her search on. The first problem comes to light: The SQL-based
search engine needs to look for several columns and tables, potentially joining them
and leading to somewhat complex queries. The more columns the search engine tar-
gets, the more complex the SQL query or queries will be.

select book.id from Book book left join book.authors author where
book.title = ? OR book.description = ? OR author.firstname = ? OR
author.lastname = ?

This is often one area where search engines limit the user in order to keep queries rel-
atively simple (to generate) and efficient (to execute). Note that this query doesn’t
take into account in how many columns a given word is found, but it seems that this
information could be important (more on this later).

1.2.2 Searching words, not columns

Our search engine now looks for the user-provided sentence across different columns.
It’s very unlikely that any of the columns contains the complete following phrase: “a
book about persisting objects with ybernate in Java.” Searching each individual word
sounds like a better strategy. This leads to the second problem: A phrase needs to be
split into several words. While this could sound like a trivial matter, do you actually
know how to split a Chinese sentence into words? After a little Java preprocessing, the
SQL-based search engine now has access to a list of words that can be searched for: a,
about, book, ybernate, in, Java, persisting, objects, with.

1.2.3 Filtering the noise

Not all words seem equal, though; book, ybernate, Java, persisting, and objects seem rele-
vant to the search, whereas a, about, in, and with are more noise and return results
completely unrelated to the spirit of the search. The notion of a noisy word is fairly
relative. First of all, it depends on the language, but it also depends on the domain on
which a search is applied. For an online book store, book might be considered a noisy
word. As a rule of thumb, a word can be considered noisy if it’s very common in the
data and hence not discriminatory (a, the, or, and the like) or if it’s not meaningful for
the search (book in a bookstore). You’ve now discovered yet another bump in the holy

10 CHAPTER 1 State of the art
quest of SQL-based search engines: A word-filtering solution needs to be in place to
make the question more selective.

1.2.4 Find by words...fast

Restricted to the list of meaningful query words, the SQL search engine can look for
each word in each column. Searching for a word inside the value of a column can be a
complex and costly operation in SQL. The SQL like operator is used in conjunction
with the wild card character % (for example, select ... from ... where title
like ‘%persisting%’ ...). And unfortunately for our search engine, this operation
can be fairly expensive; you’ll understand why in a minute.

 To verify if a table row matches title like '%persisting%', a database has two
main solutions:

■ Walk through each row and do the comparison; this is called a table scan, and it
can be a fairly expensive operation, especially when the table is big.

■ Use an index.

An index is a data structure that makes searching by the value of a column much more
efficient by ordering the index data by column value (see figure 1.4).

 To return the results of the query select * from Book book where book.title =
'Alice's adventures in Wonderland', the database can use the index to find out
which rows match. This operation is fairly efficient because the title column values are
ordered alphabetically. The database will look in the index in a roughly similar way to
how you would look in a dictionary to find words starting with A, followed by l, then by
i. This operation is called an index seek. The index structure is used to find matching
information very quickly.

 Note that the query select * from Book book where book.title like 'Alice%'
can use the same technique because the index structure is very efficient in finding val-
ues that start with a given string. Now let’s look at the original search engine’s query,

Figure 1.4 A typical index structure in a
database. Row IDs can be quickly found by title
column value, thanks to the structure.

11Pitfalls of search engines in relational databases
where title like ‘%persisting%’. The database cannot reuse the dictionary trick
here because the column value might not start with persisting. Sometimes the database
will use the index, reading every single entry in it, and see which entry has the word
persisting somewhere in the key; this operation is called an index scan. While faster than
a table scan (the index is more compact), this operation is in essence similar to the
table scan and thus often slow. Because the search engine needs to find a word inside
a column value, our search engine query is reduced to using either the table scan or
the index scan technique and suffers from their poor performance.

1.2.5 Searching words with the same root and meaning

After identifying all the previous problems, we end up with a slow, complex-to-imple-
ment SQL-based search engine. And we need to apply complex analysis to the human
query before morphing it into an SQL query.

 Unfortunately, we’re still far from the end of our journey; the perfect search
engine is not there yet. One of the fundamental problems still present is that words
provided by the user may not match letter to letter the words in our data. Our search
user certainly expects the search engine to return books containing not only persisting
but also persist, persistence, persisted, and any word whose root is persist. The process used
to identify a root from a word (called a stem) is named the stemming process. Expecta-
tions might even go further; why not consider persist and all of its synonyms? Save and
store are both valid synonyms of persist. It would be nice if the search engine returned
books containing the word save when the query is asking for persist.

 This is a new category of problems that would force us to modify our data structure
to cope with them. A possible implementation could involve an additional data struc-
ture to store the stem and synonyms for each word, but this would involve a significant
additional amount of work.

1.2.6 Recovering from typos

One last case about words: ybernate. You’re probably thinking that the publication pro-
cess is pretty bad at Manning to let such an obvious typo go through. Don’t blame
them; I asked for it. Your user will make typos. He will have overheard conversation at
Starbucks about a new technology but have no clue as to how to write it. Or he might
simply have made a typo. The search engine needs a way to recover from ibernate, yber-
nate, or hypernate. Several techniques use approximation to recover from such mis-
takes. A very interesting one is to use a phonetic approach to match words by their
phonetic (approximate) equivalent. Like the last two problems, there’s no simple
approach to solving this issue with SQL.

1.2.7 Relevance

Let’s describe one last problem, and this is probably the most important one. Assum-
ing the search engine manages to retrieve the appropriate matching data, the amount

12 CHAPTER 1 State of the art
of data might be very large. Users usually won’t scroll through 200 or 2000 results, but
if they have to, they’ll probably be very unhappy.

 How can we ensure data is ordered in a way that returns the most interesting data
in the first 20 or 40 results? Ordering by a given property will most likely not have the
appropriate effect. The search engine needs a way to sort the results by relevance.

 While this is a very complex topic, let’s have a look at simple techniques to get a
feel for the notion. For a given type of query, some parts of the data, some fields, are
more important than others. In our example, finding a matching word in the title col-
umn has more value than finding a matching word in the description column, so the
search engine can give priority to the former. Another strategy would be to consider
that the more matching words found in a given data entry, the more relevant it is. An
exact word certainly should be valued higher than an approximated word. When sev-
eral words from the query are found close to each other (maybe in the same sen-
tence), it certainly seems to be a more valuable result. If you’re interested in the gory
details of relevance, this book dedicates a whole chapter on the subject: chapter 12.

 Defining such a magical ordering equation is not easy. SQL-based search engines
don’t even have access to the raw information needed to fill this equation: word prox-
imity, number of matching words per result, and so on.

1.2.8 Many problems. Any solutions?

The list of problems could go on for awhile, but hopefully we’ve convinced you that
we must use an alternative approach for search engines in order to overcome the
shortcomings of SQL queries. Don’t feel depressed by this mountain of problem
descriptions. Finding solutions to address each and every one of them is possible, and
such technology exists today: full-text search, also called free-text search.

1.3 Full-text search: a promising solution
Full-text search is a technology focused on finding documents matching a set of words.
Because of its focus, it addresses all the problems we’ve had during our attempt to
build a decent search engine using SQL. While sounding like a mouthful, full-text
search is more common than you might think. You probably have been using full-text
search today. Most of the web search engines such as Google, Yahoo!, and Altavista use
full-text search engines at the heart of their service. The differences between each of
them are recipe secrets (and sometimes not so secret), such as the Google PageRank™
algorithm. PageRank™ will modify the importance of a given web page (result)
depending on how many web pages are pointing to it and how important each page is.

 Be careful, though; these so-called web search engines are way more than the core
of full-text search: They have a web UI, they crawl the web to find new pages or exist-
ing ones, and so on. They provide business-specific wrapping around the core of a full-
text search engine.

 Given a set of words (the query), the main goal of full-text search is to provide
access to all the documents matching those words. Because sequentially scanning all
the documents to find the matching words is very inefficient, a full-text search engine

13Full-text search: a promising solution
(its core) is split into two main operations: indexing the information into an efficient
format and searching the relevant information from this precomputed index. From
the definition, you can clearly see that the notion of word is at the heart of full-text
search; this is the atomic piece of information that the engine will manipulate. Let’s
dive into those two different operations.

1.3.1 Indexing

Indexing is a multiple-step operation whose objective is
to build a structure that will make data search more effi-
cient. It solves one of the problems we had with our SQL-
based search engine: efficiency. Depending on the full-
text search tools, some of those operations are not con-
sidered to be part of the core indexing process and are
sometimes not included (see figure 1.5).

 Let’s have a look at each operation:

■ The first operation needed is to gather informa-
tion, for example, by extracting information from
a database, crawling the net for new pages, or
reacting to an event raised by a system. Once
retrieved, each row, each HTML page, or each
event will be processed.

■ The second operation converts the original data
into a searchable text representation: the document.
A document is the container holding the text rep-
resentation of the data, the searchable representa-
tion of the row, the HTML page, the event data,
and so on. Not all of the original data will end up
in the document; only the pieces useful for search
queries will be included. While indexing the title
and content of a book make sense, it’s probably
unnecessary to index the URL pointing to the
cover image. Optionally, the process might also
want to categorize the data; the title of an HTML
page may have more importance than the core of
the page. These items will probably be stored in
different fields. Think of a document as a set of fields. The notion of fields is
step 1 of our journey to solve one of our SQL-based search engine problems;
some columns are more significant than others.

■ The third operation will process the text of each field and extract the atomic
piece of information a full-text search engine understands: words. This opera-
tion is critical for the performance of full-text search technologies but also for
the richness of the feature set. In addition to chunking a sentence into words,

Figure 1.5 The indexing
process. Gather data, and
convert it to text. From the
text-only representation of the
data, apply word processing
and store the index structure.

14 CHAPTER 1 State of the art
this operation prepares the data to handle additional problems we’ve been
facing in the SQL-based search engine: search by object root or stem and search
by synonyms. Depending on the full-text search tool used, such additional fea-
tures are available out of the box—or not—and can be customized, but the
core sentence chunking is always there.

■ The last operation in the indexing process is to store your document (option-
ally) and create an optimized structure that will make search queries fast. So
what’s behind this magic optimized structure? Nothing much, other than the
index in the database we’ve seen in section 1.2, but the key used in this index is
the individual word rather than the value of the field (see figure 1.6). The
index stores additional information per word. This information will help us
later on to fix the order-by-relevance problem we faced in our SQL-based search
engine; word frequency, word position, and offset are worth noticing. They
allow the search engine to know how “popular” a word is in a given document
and its position compared to another word.

While indexing is quite essential for the performance of a search engine, searching is
really the visible part of it (and in a sense the only visible feature your user will ever
care about). While every engineer knows that the mechanics are really what makes a
good car, no user will fall in love with the car unless it has nice curvy lines and is easy

Figure 1.6 Optimizing full-text queries
using a specialized index structure. Each
word in the title is used as a key in the
index structure. For a given word (key),
the list of matching ids is stored as well
as the word frequency and position.

15Full-text search: a promising solution
to drive. Indexing is the mechanics of our search engine, and searching is the user-
oriented polish that will hook our customers.

1.3.2 Searching

If we were using SQL as our search
engine, we would have to write a lot of
the searching logic by hand. Not only
would it be reinventing the wheel, but
very likely our wheel would look more
like a square than a circle. Searching
takes a query from a user and returns
the list of matching results efficiently
and ordered by relevance. Like index-
ing, searching is a multistep process,
as shown in figure 1.7. We’ll walk
through the steps and see how they
solve the problems we’ve seen during
the development of our SQL-based
search engine.

 The first operation is about build-
ing the query. Depending on the full-
text search tool, the way to express
query is either:

■ String based—A text-based query
language. Depending on the
focus, such a language can be as
simple as handling words and as
complex as having Boolean
operators, approximation oper-
ators, field restriction, and
much more!

■ Programmatic API based—For advanced and tightly controlled queries a program-
matic API is very neat. It gives the developer a flexible way to express complex
queries and decide how to expose the query flexibility to users (it might be a
service exposed through a Representational State Transfer (REST) interface).

Some tools will focus on the string-based query, some on the programmatic API, and
some on both. Because the query language or API is focused on full-text search, it ends
up being much simpler (in complexity) to write than its SQL equivalent and helps to
reduce one of the problems we had with our SQL-based search engine: complexity.

 The second operation, let’s call it analyzing, is responsible for taking sentences or
lists of words and applying the similar operation performed at indexing time (chunk

Figure 1.7 Searching process. From a user or
program request, determine the list of words, find the
appropriate documents matching those words,
eliminate the documents not matching, and order the
results by relevance.

16 CHAPTER 1 State of the art
into words, stems, or phonetic description). This is critical because the result of this
operation is the common language that indexing and searching use to talk to each
other and happens to be the one stored in the index. If the same set of operations is
not applied, the search won’t find the indexed words—not so useful! This common
language is the cornerstone of full-text search performances (another problem we
had with our SQL-based search engine).

 Based on the common language between indexing and searching, the third opera-
tion (finding documents) will read the index and retrieve the index information asso-
ciated with each matching word (see figure 1.8). Remember, for each word, the index
could store the list of matching documents, the frequency, the word positions in a
document, and so on. The implicit deal here is that the document itself is not loaded,
and that’s one of the reasons why full-text search is efficient: The document does not
have to be loaded to know whether it matches or not.

 The next operation (filtering and ordering) will process the information retrieved
from the index and build the list of documents (or more precisely, handlers to docu-
ments). From the information available (matching documents per word, word fre-
quency, and word position), the search engine is able to exclude documents from the
matching list. More important, it is able to compute a score for each document. The
higher its score, the higher a document will be in the result list. A lengthy discussion
about scoring is available in chapter 12, but in the meantime let’s have a look at some
factors influencing its value:

■ In a query involving multiple words, the closer they are in a document, the
higher the rank.

■ In a query involving multiple words, the more are found in a single document,
the higher the rank.

■ The higher the frequency of a matching word in a document, the higher the
rank.

■ The less approximate a word, the higher the rank.

Depending on how the query is expressed and how the product computes score, these
rules may or may not apply. This list is here to give you a feeling of what may affect the
score, therefore the relevance of a document. This last part has solved the final prob-
lem faced by our SQL-based search engine: ordering results by relevance.

 Once the ordered list of documents is ready, the full-text search engine exposes
the results to the user. It can be through a programmatic API or through a web page.
Figure 1.8 shows a result page from the Google search engine.

 Sounds like we’ve found the perfect solution to address our problem. Now let’s
have a look at the kind of full-text search solutions on the market.

17Full-text search: a promising solution
1.3.3 Full-text search solutions

A variety of full-text search solutions are available. Depending on their focus, they
might better fit different needs. Some go beyond the core part of full-text searching
and all the way up to exposing the results in a web page for you. Three main families
of solutions exist:

■ An integrated full-text engine in the relational database engine
■ A black box server providing the full-text service
■ A library providing a full-text engine implementation

Let’s explore these three classic approaches.
FULL TEXT IN RELATIONAL DATABASES

Integrating full-text search with the relational engine sounds like a very appealing
solution when full-text searches aim at targeting data stored in the database. When
the objective is to enhance SQL queries of our application with full-text search capabil-
ities, this solution is a serious contender. Let’s go through some of the benefits:

■ Less management duplication—Because both your data and your index are han-
dled by the same product, administering the system should be quite simple.
(Note that some full-text-search relational integration is not that integrated and
requires a different backup-and-restore process.)

■ Data and index are always synchronized—Because a database knows when you
update your data, keeping the index up to date is very easy. Note that not all
products shine in that regard.

Figure 1.8 Search results returned as a web page: one of the possible ways to expose results

18 CHAPTER 1 State of the art
■ Mixing SQL queries and full-text queries—The authors think this is the most appeal-
ing benefit; SQL provides a lot of flexibility when querying data. Enhancing it
with full-text-search keywords makes the querying experience more integrated.

Performance-wise, these products differ greatly depending on the quality of the full-
text search engine and the complexity of the integrated query (SQL and full-text).

 Recent versions of the main databases tend to include a full-text search module.
Oracle DB, Microsoft SQL Server, and MySQL, to name a few, embed such a module.
As shown in figure 1.9, your application talks only to the database.

 This solution unfortunately suffers from some problems:

■ The first problem is scalability. In today’s application architecture, the database
tends to be the most critical path where scalability cannot be as easily achieved
as in other tiers. Full-text indexing and searching can be quite intensive in
terms of CPU, memory, and input/output. Do we really want to spend database
resources on such a feature set as depicted in figure 1.9? Will it be a problem in
the future, and how fast will we reach the scalability limit?

■ The second problem is portability. Unfortunately, there is no standard today to
express a full-text query. Relational vendors have extended SQL to support the
ability to express those kind of queries, every single one in its own way. The end
result for the user is the inability to build an application compatible with multi-
ple relational backends. Even if the user is committed to a migration effort, the
features themselves are not standard, and their behavior might change from
one product to another (if they are even present in both).

■ The third problem is flexibility. Depending on the relational engine, indexing
can be more or less flexible. Generally speaking, flexibility is not the strong
point of such engines. Flexibility is key to adapting your search engine to your
business needs and to fulfilling your user’s requests. Flexibility is needed both
at indexing time (how you want your data to be prepared) and at searching
time (what kind of full-text operations are available).

Full-text search engines embedded in a relational database are best for people who
specifically target searching on the data embedded in their database, who don’t

Figure 1.9 Full-text embedded in a relational database

19Full-text search: a promising solution
expect the requirements to go too far, who aren’t ready to invest a lot in development
time, and of course who aren’t concerned about database portability. Scalability is
another concern for some implementations.
APPLIANCE SOLUTIONS

On the other side of the full-text search spectrum are fully dedicated products whose
focus is mainly on searching heterogeneous content on a website, intranet, or the
information system in general. As shown in figure 1.10, they serve as the central index-
ing and searching service. Thanks to their focus, they tend to have very good perfor-
mances both at indexing time and for processing queries. The best-known example
today is the Google Search Appliance, but the giant is not the only one on this market.

 Such a tool is deployed on a dedicated server (included or not) and crawls your
website, your intranet, and the content of your documents (stored in a content man-
agement system or elsewhere) in the background, pretty much like Yahoo! and
Google.com do for the web. Those tools are very interesting for the out-of-the-box
experience they provide. Beyond the core indexing and searching capabilities that
belong to full-text search, these products usually provide some or all of those func-
tionalities:

■ Crawling for websites, CMS, wikis, and databases
■ Indexing a variety of document formats such as presentations, spreadsheets,

and text documents
■ Providing a unified web page to search this content and render the results

Black box solutions really shine when you aim at finding data across the enterprise
and when they are stored in a variety of areas. Maintenance of these solutions is usu-
ally quite low because of their out–of-the-box focus. Most products come with an
administration interface. They’re not primarily focused on providing a business-

Figure 1.10 Server dedicated to full-text search

20 CHAPTER 1 State of the art
oriented search capability of a specific application and might lack the flexibility and
refinement to do so. Another differentiator you need to look at is the variety of con-
nectors: You might need to manually code access to your information system through
some custom connector API if available connectors are lacking or are too generic. For
commercial products, pricing may vary, but a price per document indexed or per
index size is quite common.

NOTE Apache Solr™, a product based on Apache Lucene™, is a hybrid product
in between the appliance and the library category. It takes care of a lot of
the administration but exposes the indexing and searching through an
XML-based API.

Let’s now explore the last approach: search libraries.
LIBRARIES

A full-text search library is an embeddable full-text engine that you can use in your
application. This solution is by far the most flexible of the three when the search fea-
ture aims at being integrated into an application. Your application will call the library
APIs when indexing a document or when searching a list of matching results. The
query expressiveness and flexibility is the strong point of such solutions: The applica-
tion developer can decide which full-text feature will be exposed and which data spe-
cifically will be searchable (and potentially manipulate this data before indexing) and
is free to decide how a user will express his query (which user interface, which natural
language, and so on). Flexibility when indexing is also quite strong since the applica-
tion developer decides when and what to index and has control over the structure.
The application is at the center of the full-text experience, as figure 1.11 shows.

 Depending on the richness and the popularity of the library you choose, it may be
able to read complex formats such as PDFs or Word documents (either as part of the
core product or as third-party plug-ins).

Figure 1.11 Library providing a full-text search engine implementation

21Full-text search: a promising solution
 Unfortunately, flexibility comes at a price. You need to be able to integrate the full-
text library into your application, as shown in figure 1.11. While it’s very easy for a new
application, it might be more difficult for an application that has reached the end of
its life (or close to it) or for an application for which you don’t have the source code.
While developers are willing to spend time working on integrating the search phase,
they often find it harder to integrate the necessary indexing phase. Said differently,
developers would rather avoid the burdens of infrastructure code. But as you’ve seen
previously, both operations (indexing and searching) are integral parts of a full-text
search engine.

 Among the libraries available to you, Apache Lucene™ is probably the most popu-
lar. Lucene is an open source library from the Apache Software Foundation initially
written and still maintained in Java. Because of its popularity, Lucene has subse-
quently been ported in different languages (C, C++, C#, Objective-C, Perl, PHP,
Python, and a few more). Lucene is also noticeable because this library is at the core
of Hibernate Search; this is not the last time you’ll read about Lucene in this book.

 Now that we know the three main full-text solutions, the hard part is in front of us.
Which one should we choose?
WHICH ONE SHOULD I CHOOSE?

The answer is, “It depends.” For each solution, we’ve tried to give you the most com-
mon use case and the strong and weak points. Each product on the market fits more
or less in one of those categories, but some will sit in between. Instead of giving you a
definitive answer, let’s have a look at some of the questions you should answer before
deciding to go for one product:

■ Do I need to search data from one database or from multiple sources?
■ Do I want to slightly improve an existing search feature, or do I want to fully

benefit from a full-text search engine?
■ How much (in time and money) will this solution cost me?
■ Can I modify or influence the scoring (prioritize) algorithm to fit my needs? Do

I care?
■ Can I express a search by phrase, approximation, range, exclusion, weak inclu-

sion, mandatory inclusion, and so on?
■ Can I index nontextual data? What about my own data format?
■ What is the maintenance cost?
■ How fast is indexing? How fast is searching? How about after 1, 10, or 100 mil-

lion records?
■ How much integration and customization do I need for my business rules?
■ How well integrated does a search need to be with my user interface?

This list of questions is not exhaustive. Both authors have used Lucene extensively in
their applications and like the flexibility and performance it provides. They also think
that the way to implement the best search engine focused on your business needs is to
use the library approach. They also were ready to pay the price of flexibility and dig
more into the code. This is the approach described in this book. Hibernate Search

22 CHAPTER 1 State of the art
and this book are focused on reducing as much as possible the overhead paid for the
flexibility gained when using Lucene and Hibernate.

NOTE HOW DOES HIBERNATE SEARCH COMPARE TO XYZ? During the book
development, people have asked for a comparison between Hibernate
Search and other approaches on the market. The authors have decided
to resist doing that for a couple of reasons:
■ Nobody is equally knowledgeable on all products; this makes comparisons

unfair.
■ Products evolve rapidly, making such comparison obsolete quickly.
■ We believe that this chapter has given you the fundamentals to understand

full-text search and a grid to make your own choices—a cleaner approach,
we think.

The next section will focus on problems and difficulties of integrating Lucene into
domain model–centric applications. This will help you understand the reasons behind
Hibernate Search.

1.4 Mismatches between the round object world
and the flat text world
Full-text search seems to be the magic bullet for our search solution when search is
driven by a human input. It solves many of the problems we had with an SQL-based
solution: performance, complexity to express the query, search by approximation,
phonetic search, and ordering by relevance. And if we focus on the library solution,
which is the one that seems to provide the most flexibility for achieving our goals,
we’ll be able to extend our application with a custom search engine that will increase
user productivity. But how hard will it be to add such a solution into an application?

 To answer this question, we’ll take a typical Java application and try to integrate
Lucene. Our typical Java application is a web application (it could very well be a rich
client application) that uses Hibernate to persist a domain model into a relational
database.

NOTE A domain model is the object representation of a data model; it repre-
sents the business domain of an application. This model, which is fairly
close to the relational model, is mapped to the database thanks to an
object-relational mapper (ORM) such as Hibernate in our application.
This object model is at the heart of your application and is used by differ-
ent modules to interact with the data.

This journey will show us three fundamental problems:

■ The structural mismatch
■ The synchronization mismatch
■ The retrieval mismatch

23Mismatches between the round object world and the flat text world
People used to ORMs might find the idea of mismatch quite familiar. This is not sur-
prising since we try to exchange information from an object model to an index
model, as ORMs do from the object model to the relational model.

1.4.1 The structural mismatch

Lucene represents a record (an entry) as a Document. A Document is an API that can
receive as many fields as pleases you. Each field has a name and a value. This value is a
string. A full-text search engine like Lucene does not know a lot of types. The only
type it understands is string. We need to find a way to convert the rich and strongly
typed domain model in Java to a string-only representation that can be digested and
indexed by the full-text search engine (see figure 1.12). While this is fairly easy for
some types, it can be pretty questionable for others.

 Date is one example. When doing a search query on a date or date range, we don’t
always need the date with its full precision up to the millisecond. Perhaps providing a
way to store only the date up to the day or the hour could make sense. Date is not the
only type with problems; number is another one. When comparing numbers, mathe-
matical common sense tells us that 23 is lower than 123. Not for Lucene! Remember,
everything is a string, and in the string world, 23 is indeed higher than 123 because
the lexical order of 2 is higher than 1. Beyond built-in Java types, custom classes like
Address or MoneyAmount also have to be somewhat translated into a string representa-
tion in the index.

 Let’s explore our domain model a bit more. Some entities have relationships with
each other. In a relational model, these relations are represented by foreign keys,
while in an object model, they are pointers from one object to another. Unfortunately,
Lucene doesn’t support the notion of relation between documents, as shown in
figure 1.13. The consequence is quite strong and means that Lucene does not support
the notion of JOIN (as in SQL). We need to find a workaround to build queries that
rely on constraint to related entities or documents, like returning the list of matching
orders where one item has Alice in the title and the customer lives in Atlanta.

Figure 1.12 All rich types from Java have to
be converted into a string-only world.

24 CHAPTER 1 State of the art
To integrate the conversion from the object model to the index model, we need to
write some boilerplate code.

1.4.2 The synchronization mismatch

Converting the data is one part of the problem; the system also has to keep the data
synchronized between the database and the index. Remember, Lucene isn’t part of
the relational engine and doesn’t know when the data is updated. Thanks to its high-
level knowledge, the application layer knows when data is changed. The application
could be responsible for updating the index when it updates a database row, as shown
in figure 1.14.

 This solution is a bit fragile, especially if data is updated in multiple areas in the
system. Missing one or two update routines might have unfortunate consequences

Figure 1.13 The notion of relationship between entities is not available in a full-text index
such as Lucene. How can a query on associated objects be expressed?

Figure 1.14 Every change made to the database by the
application has to be made to the full-text index as well.

25Mismatches between the round object world and the flat text world
and be very hard to track down. Likewise, if you make use of the update-by-cascade
feature provided by ORMs, it can be fairly hard to know which object is deleted,
updated, or created in a whole object graph.

Our integration process now has to take care of the synchronization between the two
data structures, one way or another.

1.4.3 The retrieval mismatch

Once the data is properly converted to the index and kept synchronized with the data-
base, we need to think about doing what we planned from day one: finding informa-
tion. The full-text search engine will return a list of matching documents through a
Lucene-specific API. A document is essentially a map of field names and field values.
The developer has two choices: Accept an untyped version of its domain model (the
map) and adjust the code to deal with two different models depending on the search
method (full-text versus SQL), or convert the document back to the domain model. In
addition to having to write the code to convert the index data back into an object
model, some problems will arise: The index needs to store the same amount of data as
the database, potentially wasting Lucene performance. You also need to be sure that
the text version of the data can be converted back into its original type. This system
also needs to implement lazy loading.

Why not get rid of the database?
A lot of the problems encountered are due to the fact that data has to be maintained
in both the full-text index and the database. Why not store all the data in the Lucene
index and remove the database from the equation?

A database is a very complex system that guarantees some very important properties
while you’re playing with your data. Data is accessible and updatable by many con-
current users as if they were the only one playing around. Modern relational databas-
es have become very good at ACID (atomicity, concurrency, isolation, durability)
concurrency and offer scalability unattained by other storage systems. Beyond con-
currency and referential integrity, relational databases have years of known records
of stability in keeping data safe.

Every major development platform has access to the main relational databases. May-
be you’re rewriting an old COBOL application in Java. Your data and databases host-
ing it will most likely outlive your application.Compatibility is key; don’t jeopardize it.

26 CHAPTER 1 State of the art
1.5 Summary
We’ve shown in this chapter various strategies to provide search functionalities to an
application and to help the user on his quest to access information. While categori-
zation and a detailed search screen address some of the needs, the simple search
box feature popularized by websites such as Google or Yahoo! has become increas-
ingly important.

 Traditional relational database query solutions do not address efficiently (and
sometimes not at all) search requirements when it comes to interaction with human
demand. Full-text search technologies address those concerns by providing solutions
to searching by relevance, searching by approximation, efficiently searching docu-
ments matching certain words, and so on.

 Full-text search opens a lot of doors that were not accessible by other technologies;
it pushes the limits of the user experience by providing a seminatural way of express-
ing queries. Unfortunately, properly integrating a full-text search engine like Lucene
into a classic Java architecture, whether it be SE (Standard Edition) or EE (Enterprise
Edition), is not an easy task, and most people have to accept some inconsistency
within their programmatic model (from the Java Persistence/Hibernate part and
from the Lucene part). The authors believe that these problems are the major reasons
for the lack of large-scale adoption of full-text search engines like Lucene by Java
applications despite constant pressure by the customers. The price to pay is high
enough that project leaders think twice before jumping.

 Fortunately, Hibernate Search addresses the three mismatches and makes using
Hibernate and Lucene a pleasant experience in which developers can focus on the
business value of a search instead of spending most of their time in boring conver-
sions and infrastructure code. This sounds like the perfect time to be introduced to

Lazy loading
Lazy loading is a technique heavily used in ORMs to avoid loading too much informa-
tion into memory. Without lazy loading, loading an object means loading the object
and all its associated objects recursively. Provided that the entities have rich relation-
ships, this could mean loading the whole database into memory. To avoid that, an
ORM will load only the object or object graph up to a certain level. This level is defined
statically or dynamically by the developer. If the program reaches one of the nonload-
ed associations, the ORM will load the needed object graph section transparently.

Don't try this at home; you’ll soon discover that lazy loading is a quite complex prob-
lem to solve! There’s an additional inconvenience even if you manage to solve the
lazy loading problem: Hibernate no longer takes care of the loaded objects. If the ap-
plication changes one of those objects, how do you make sure the changes will be
propagated to both the database and the index? One last problem with this architec-
ture is that you could end up having two instances of an object representing the same
database row, one from Hibernate and one from Lucene, leading to synchronization
hell. Which one has the correct information?

27Summary
Hibernate Search! The next chapter will get you started with Hibernate Search in a
pragmatic way, from the setup and configuration process to the mapping and query-
writing process. While walking through this guide, you’ll start to see how Hibernate
Search addresses the three mismatches we introduced in this chapter.

Getting started
with Hibernate Search
In the chapter 1, we discussed difficulties of integrating a full-text search engine
such as Apache Lucene into a Java application centered on a domain model and
using Hibernate or Java Persistence to persist data. More specifically, we saw three
mismatches:

■ Structural mismatch—How to convert the object domain into the text-only
index; how to deal with relations between objects in the index.

This chapter covers
■ What is Hibernate Search?
■ How to set up and configure Hibernate Search
■ An introduction to mapping your domain model
■ An introduction to indexing your data
■ An introduction to doing full-text queries
■ How to use Luke
28

29
■ Synchronization mismatch—How to keep the database and the index synchro-
nized all the time.

■ Retrieval mismatch—How to get a seamless integration between the domain
model-centric data-retrieval methods and full-text search.

Hibernate Search leverages the Hibernate ORM and Apache Lucene (full-text search
engine) technologies to address these mismatches. This chapter will give you an over-
view of Hibernate Search: how to use it, how to express full-text queries, and how it fits
into the Hibernate programmatic model.

 Hibernate Search is a project that complements Hibernate Core by providing the
ability to do full-text search queries on persistent domain models. Hibernate Core is
probably the most famous and most used ORM tool in the Java industry. An ORM lets
you express your domain model in a pure object-oriented paradigm, and it persists
this model to a relational database transparently for you. Hibernate Core lets you
express queries in an object-oriented way through the use of its own portable SQL
extension (HQL), an object-oriented criteria API, or a plain native SQL query. Typi-
cally, ORMs such as Hibernate Core apply optimization techniques that an SQL hand-
coded solution would not: transactional write behind, batch processing, and first- and
second-level caching. Hibernate Core is released under an open source license and
can be found at http://hibernate.org.

 Hibernate Search’s full-text technology entirely depends on Apache Lucene.
Lucene is a powerful full-text search engine library hosted at the Apache Software
Foundation (http://lucene.apache.org/java). It has rapidly become the de facto stan-
dard for implementing full-text search solutions in Java. This success comes from sev-
eral factors:

■ It is free and open source.
■ It has low-level and very powerful APIs.
■ It is agnostic as to the kind of data indexed and searched.
■ It has a good record of performance and maturity.
■ It has a vibrant community.

All these qualities make Lucene the perfect information-retrieval library for building
search solutions. These reasons are why Hibernate Search is built on top of Lucene.

 Hibernate Search, which is also released under an open source license, is a bridge
that brings Lucene features to the Hibernate world. Hibernate Search hides the low-
level and sometimes complex Lucene API usage, applies the necessary options under
the hood, and lets you index and retrieve the Hibernate persistent domain model
with minimal work. This chapter should give you a good understanding of how Hiber-
nate Search fits into the Hibernate programmatic model and describe how to quickly
start and try Hibernate Search.

 To demonstrate this integration, we’ll start by writing a DVD store application. We
won’t write the whole application but rather focus on the domain model and the core
engine, specifically the search engine.

http://hibernate.org
http://lucene.apache.org/java

30 CHAPTER 2 Getting started with Hibernate Search
 Our object model will be quite simple and contain an Item entity. The Item entity
represents a DVD. We want to let our users search by some of the Item properties. In
this chapter, we’ll show how to set up Hibernate Search, describe the metadata to
make Item a full-text searchable entity, index the items stored in the database, and
query the system to retrieve the matching DVDs.

2.1 Requirements: what Hibernate Search needs
Hibernate Search has been developed with Java 5 and needs to run on the Java Devel-
opment Kit (JDK) or Java Runtime Environment (JRE) version 5 or above. Aside from
this limitation, Hibernate Search runs everywhere Hibernate Core runs, especially in
the architecture and environment of your choice. While it’s next to impossible to list
all the possible environments Hibernate and Hibernate Search run on, we can list a
few typical ones:

■ Full-featured applications (web based or not) deployed on a Java EE application
server

■ Simpler web-based applications on a servlet container
■ Web-based applications using JBoss Seam
■ Swing applications
■ So-called lightweight dependency injection frameworks such as Spring Frame-

work, Guice, or Web Beans
■ Applications built on Java SE
■ Frameworks or platforms that use Hibernate, such as Grails

Hibernate Search integrates well into the Hibernate platform. More specifically, you
can use any of the following mapping strategies and APIs while using Hibernate
Search:

■ Hibernate Core APIs and hbm.xml files
■ Hibernate Core APIs and Hibernate Annotations
■ Hibernate EntityManager APIs and hbm.xml files
■ Hibernate EntityManager APIs and Hibernate Annotations

In other words, Hibernate Search is agnostic to your choice of mapping metadata
(XML or annotations) and integrates with both Hibernate native APIs and Java Persis-
tence APIs.

 While Hibernate Search has few restrictions, this chapter has some. The authors
expect the reader to understand the basics of Hibernate. The reader must be familiar
with the object-manipulation APIs from the Hibernate Session or the Java Persis-
tence EntityManager as well as the query APIs. She also must be familiar with asso-
ciation mappings and the concept of bidirectional relationships. These requirements
are nothing unusual for someone having a few months of experience with Hibernate.

 In this book, most examples will use Hibernate Annotations as the mapping meta-
data. Annotations have some advantages over an XML deployment descriptor:

31Setting up Hibernate Search
Metadata is much more compact, and mixing the class structure and the metadata
greatly enhances behavior readability. Besides, modern platforms, including the Java
platform, are moving away from XML as the preferred choice for code-centric meta-
data descriptors, which is reason enough for the authors to leave XML alone. Remem-
ber, while Hibernate Search uses annotations for its metadata, it works perfectly with
hbm.xml-based domain models, and it should be simple to port the examples.

2.2 Setting up Hibernate Search
Configuring Hibernate Search is fairly easy because it integrates with the Hibernate
Core configuration lifecycle. That being said, we’ll go through the steps of adding
Hibernate Search in a Hibernate-based application. We’ll add the libraries to the class-
path and add the configuration properties. But first you need to download Hibernate
Search at http://www.hibernate.org or use the JBoss Maven repository (http://reposi-
tory.jboss.org/maven2/org/hibernate/hibernate-search). It’s useful to download the
Apache Lucene distribution as well, which is available at http://lucene.apache.org/
java/. It contains both documentation and a contribution section containing add-ons
that aren’t bundled with Hibernate Search. Make sure you use the same Lucene ver-
sion that Hibernate Search is based on. You can find the correct version in the Hiber-
nate Search distribution in lib/readme.txt.

2.2.1 Adding libraries to the classpath

Add Hibernate Search’s necessary JARs (Java Archives) into your classpath. Hibernate
Search requires three JARs:

■ hibernate-search.jar—The core API and engine of Hibernate Search
■ lucene-core.jar—Apache Lucene engine
■ hibernate-commons-annotations.jar—Some common utilities for the Hibernate

project

All three JARs are available in the Hibernate Search distribution, and pulling them
from there is the safest way to have a compatible trio. Thus far Hibernate Search has
been staying as close as possible to the latest Lucene version to benefit from bug fixes,
performance improvements, and new features of the Lucene community.

 You can also add the optional support for modular analyzers by adding the follow-
ing JARs to your classpath:

■ solr-common.jar
■ solr-core.jar
■ lucene-snowball.jar

These JARs (available in the Hibernate Search distribution) are a subset of the Solr
distribution and contain analyzers. While optional, we recommend adding these JARs
to your classpath because it greatly simplifies the use of analyzers. This feature is avail-
able beginning with Hibernate Search 3.1.

http://www.hibernate.org
http://reposi-tory.jboss.org/maven2/org/hibernate/hibernate-search
http://reposi-tory.jboss.org/maven2/org/hibernate/hibernate-search
http://reposi-tory.jboss.org/maven2/org/hibernate/hibernate-search
http://lucene.apache.org/

32 CHAPTER 2 Getting started with Hibernate Search
NOTE You can put the full Solr distribution instead of the version provided by
Hibernate Search in your classpath if you wish to.

Hibernate Search is not compatible with all versions of Hibernate Core and Hibernate
Annotations. It’s best to refer to the compatibility matrix available on the Hiber-
nate.org download page. At the time this book was written, the compatibility matrix
tells us that:

■ Hibernate Search 3.0.x is compatible with Hibernate Core 3.2.x starting from
3.2.2, Hibernate Annotations 3.3.x, and Hibernate EntityManager 3.3.x.

■ Hibernate Search 3.1.x is compatible with Hibernate Core 3.3.x, Hibernate
Annotations 3.4.x, and Hibernate EntityManager 3.4.x.

NOTE You can find dependencies that Hibernate Search has been built on and
initially tested on in the Hibernate Search distribution or in the Maven
dependency file (POM). Hibernate Search is published to the JBoss
Maven repository (http://repository.jboss.org/maven2/org/hibernate/
hibernate-search).

If you use Hibernate Annotations, hibernate-commons-annotations.jar is already pres-
ent in your classpath.

 Adding a JAR to your classpath depends on your deployment environment. It’s vir-
tually impossible to describe all likely deployments, but we’ll go through a few of
them.

 In an SE environment, the JAR list is provided to the virtual machine thanks to a
command-line argument:

on Windows platforms
java -classpath hibernate-search.jar;lucene-core.jar
 ➥;hibernate-commons-annotations.jar;solr-core.jar ... my.StartupClass

on Unix, Linux and Mac OS X platforms
java -classpath hibernate-search.jar:lucene-core.jar:
 ➥ hibernate-commons-annotations.jar:solr-core.jar ... my.StartupClass

If you happen to deploy your Hibernate application in a WAR (Web Archive) either
deployed in a naked servlet container or a full-fledged Java EE application server,
things are a bit simpler; you just need to add the necessary JARs into the lib directory
of your WAR.

<WAR ROOT>
 WEB-INF
 classes
 [contains your application classes]
 lib
 hibernate-search.jar
 lucene-core.jar
 hibernate-commons-annotations.jar
 solr-core.jar

http://repository.jboss.org/maven2/org/hibernate/hibernate-search
http://repository.jboss.org/maven2/org/hibernate/hibernate-search

33Setting up Hibernate Search
 solr-common.jar
 lucene-snowball.jar
 [contains other third party libraries]
...

You could also put Hibernate Search-required JARs as a common library in your serv-
let container or application server. The authors don’t recommend such a strategy
because it forces all deployed applications to use the same Hibernate Search version.
Some support or operation teams tend to dislike such a strategy, and they’ll let you
know it.

 If you deploy your application in an EAR (Enterprise Archive) in a Java EE applica-
tion server, one of the strategies is to put the third-party libraries in the EAR’s lib direc-
tory (or in the library-directory value in META-INF/application.xml if you happen
to override it).

<EAR_ROOT>
 myejbjar1.jar
 mywar.war
 META-INF
 ...
 lib
 hibernate-search.jar
 lucene-core.jar
 hibernate-commons-annotations.jar
 solr-core.jar
 solr-common.jar
 lucene-snowball.jar
 [contains other third party libraries]
...

Unfortunately, this solution works only for Java EE 5 application servers and above. If
you’re stuck with a J2EE application server, you’ll need to add a Class-Path entry in
each META-INF/MANFEST.MF file of any component that depends on Hibernate
Search. Listing 2.1 and listing 2.2 describe how to do it.

 Manifest-Version: 1.0
Class-Path: lib/hibernate-search.jar lib/lucene-core.jar
 ➥lib/hibernate-commons-annotations.jar lib/solr-core.jar ...

 <EAR_ROOT>
 myejbjar1.jar
 META-INF/MANIFEST.MF (declaring the dependency on Hibernate Search)
 mywar.war
 META-INF
 ...
 lib
 hibernate-search.jar
 lucene-core.jar

Listing 2.1 MANIFEST.MF declaring a dependency on Hibernate Search

Listing 2.2 Structure of the EAR containing Hibernate Search

34 CHAPTER 2 Getting started with Hibernate Search
 hibernate-commons-annotations.jar
 solr-core.jar
 solr-common.jar
 lucene-snowball.jar
 [contains other third party libraries]
 ...

The Class-Path entry is a space-separated list of JARs or directory URLs relative to
where the referencing archive is (in our example, EAR root).

 Believe it or not, you just did the hardest part of the configuration! The next step
is to tell Hibernate Search where to put the Lucene index structure.

2.2.2 Providing configuration

Once Hibernate Search is properly set up in your classpath, the next step is to indicate
where the Apache Lucene indexes will be stored. You will place your Hibernate
Search configuration in the same location where you placed your Hibernate Core
configuration. Fortunately, you do not need another configuration file.

 When you use Hibernate Core (possibly with Hibernate Annotations), you can
provide the configuration parameters in three ways:

■ In a hibernate.cfg.xml file
■ In the /hibernate.properties file
■ Through the configuration API and specifically configuration.setProp-

erty(String, String)

The first solution is the most commonly used. Hibernate Search properties are regu-
lar Hibernate properties and fit in these solutions. When you use Hibernate Entity-
Manager, the standard way to provide configuration parameters is to use the META-
INF/persistence.xml file. Injecting Hibernate Search properties into this file is also
supported. This is good news for us, in that there’s no need to think about yet another
configuration file to package!

 What kind of configuration parameters does Hibernate Search need? Not a lot by
default. Hibernate Search has been designed with the idea of configuration by excep-
tion in mind. This design concept uses the 80 percent-20 percent rule by letting the
80 percent scenarios be the default configuration. Of course, it’s always possible to
override the default in case we fall into the 20 percent scenarios. The configuration-
by-exception principle will be more visible and more useful when we start talking
about mapping. Let’s look at a concrete example. When using Hibernate Search, you
need to tell the library where to find Apache Lucene indexes. By default, Hibernate
Search assumes you want to store your indexes in a file directory; this is a good
assumption because it provides a good trade-off between performance and index
size. However, you’ll probably want to define the actual directory where the indexes
will be stored. The property name is hibernate.search.default.indexBase, so
depending on the configuration strategy used, the configuration will be updated as
shown in listing 2.3.

35Setting up Hibernate Search

#hibernate.properties

#regular Hibernate Core configuration
hibernate.dialect org.hibernate.dialect.PostgreSQLDialect
hibernate.connection.datasource jdbc/test

#Hibernate Search configuration
hibernate.search.default.indexBase /users/application/indexes

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE hibernate-configuration PUBLIC
 "-//Hibernate/Hibernate Configuration DTD 3.0//EN"
 "http://hibernate.sourceforge.net/hibernate-configuration-3.0.dtd">

<!-- hibernate.cfg.xml -->
<hibernate-configuration>
 <session-factory name="dvdstore-catalog">

 <!-- regular Hibernate Core configuration -->
 <property name="hibernate.dialect">
 org.hibernate.dialect.PostgreSQLDialect
 </property>
 <property name="hibernate.connection.datasource">
 jdbc/test
 </property>

 <!-- Hibernate Search configuration -->
 <property name="hibernate.search.default.indexBase">
 /users/application/indexes
 </property>

 <!-- mapping classes -->
 <mapping class="com.manning.dvdstore.model.Item"/>

 </session-factory>
</hibernate-configuration>

<?xml version="1.0" encoding="UTF-8"?>
<persistence xmlns="http://java.sun.com/xml/ns/persistence"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/persistence
 http://java.sun.com/xml/ns/persistence/persistence_1_0.xsd"
 version="1.0">

 <!-- example of a default persistence.xml -->
 <persistence-unit name="dvdstore-catalog">
 <jta-data-source>jdbc/test</jta-data-source>

 <properties>
 <!-- regular Hibernate Core configuration -->
 <property name="hibernate.dialect"
 value="org.hibernate.dialect.PostgreSQLDialect"/>

 <!-- Hibernate Search configuration -->

Listing 2.3 Hibernate Search configuration

hibernate.properties file Define your Hibernate
Core properties

Define Hibernate Search-
specific properties

hibernate.cfg.xml file

Hibernate Search
properties

List your entities

META-INF/persistence.xml

http://hibernate.sourceforge.net/hibernate-configuration-3.0.dtd
http://java.sun.com/xml/ns/persistence
http://www.w3.org/2001/XMLSchema-instance
http://java.sun.com/xml/ns/persistence
http://java.sun.com/xml/ns/persistence
http://java.sun.com/xml/ns/persistence/persistence_1_0.xsd

36 CHAPTER 2 Getting started with Hibernate Search
 <property name="hibernate.search.default.indexBase"
 value="/users/application/indexes"/>

 </properties>

 </persistence-unit>
</persistence>

This is the last time you’ll see the XML headers (doctype and schema) in this book.
They should always be there, but for conciseness we’ll drop them in future examples.

 This is the only configuration property we need to set to get started with Hibernate
Search. Even this property is defaulted to ./, which is the JVM current directory, but
the authors think it’s more appropriate to explicitly define the target directory.

 Another property can be quite useful, especially in test environments: the Lucene
directory provider. Hibernate Search stores your indexes in a file directory by default.
But it can be quite convenient to store indexes only in memory when doing unit tests,
especially if, like the authors, you prefer to use in-memory databases like HSQLDB, H2,
or Derby to run your test suite. It makes the tests run faster and limits side effects
between tests. We’ll discuss this approach in section 5.1.3 and section 9.5.2.

NOTE IN-MEMORY INDEX AND UNIT TESTING We’d like to warn you of a classic
error we’re sure you’ll be bitten by that can cost you a few hours until you
figure it out. When you run a test on your index, make sure it is on par
with the database you’re testing on. Classically, unit tests clear the data-
base and add a fresh set of data. Every so often you’ll forget to update or
clear your file system’s Lucene directory. Your results will look confusing,
returning duplicate or stale data. One elegant way to avoid that is to use
in-memory directories; they’re created and destroyed for every test, prac-
tically isolating them from one another.

As you can see, configuring Hibernate Search is very simple, and the required param-
eters are minimal. Well, it’s not entirely true—we lied to you. If your system uses
Hibernate Annotations 3.3.x and beyond, these are truly the only parameters
required. But if your system uses Hibernate Core only, a few additional properties are
required.

NOTE HOW DO I KNOW WHETHER TO USE HIBERNATE ANNOTATIONS OR SIMPLY

HIBERNATE CORE? There are three very simple rules:

■ If your domain model uses Hibernate Annotations or Java Persistence anno-
tations, you’re using Hibernate Annotations.

■ If your application uses the Hibernate EntityManager API (the Java Persis-
tence API really), you’re also using Hibernate Annotations under the cover.

■ If you’re still unsure, check whether you create a Configuration object or an
AnnotationConfiguration object. In the former case, you’re using Hibernate
Core. In the latter case, you’re using Hibernate Annotations.

Hibernate Search
properties

37Setting up Hibernate Search
Why is that? Hibernate Annotations detects Hibernate Search and is able to autowire
Hibernate event listeners for you. Unfortunately this is not (yet) the case for Hiber-
nate Core. If you’re using only Hibernate Core, you need to add the event listener
configuration, as shown in listing 2.4.

 <hibernate-configuration>
 <session-factory>
 ...
 <event type="post-update">
 <listener

class="org.hibernate.search.event.FullTextIndexEventListener"/>
 </event>
 <event type="post-insert">
 <listener

class="org.hibernate.search.event.FullTextIndexEventListener"/>
 </event>
 <event type="post-delete">
 <listener

class="org.hibernate.search.event.FullTextIndexEventListener"/>
 </event>
 <event type="post-collection-recreate">
 <listener

class="org.hibernate.search.event.FullTextIndexEventListener"/>
 </event>
 <event type="post-collection-remove">
 <listener

class="org.hibernate.search.event.FullTextIndexEventListener"/>
 </event>
 <event type="post-collection-update">
 <listener

class="org.hibernate.search.event.FullTextIndexEventListener"/>
 </event>
 </session-factory>
</hibernate-configuration>

Now each time Hibernate Core inserts, updates, or deletes an entity, Hibernate
Search will know about it.

NOTE If you use Hibernate Search 3.0.x, you need a slightly different configura-
tion. Listing 2.5 describes it.

<hibernate-configuration>
 <session-factory>
 ...
 <event type="post-update">
 <listener

class="org.hibernate.search.event.FullTextIndexEventListener"/>
 </event>
 <event type="post-insert">

Listing 2.4 Enable event listeners if you don’t use Hibernate Annotations

Listing 2.5 Enable event listeners for Search 3.0 if you don’t use Annotations.

38 CHAPTER 2 Getting started with Hibernate Search
 <listener
class="org.hibernate.search.event.FullTextIndexEventListener"/>

 </event>
 <event type="post-delete">
 <listener

class="org.hibernate.search.event.FullTextIndexEventListener"/>
 </event>
 <event type="post-collection-recreate">
 <listener

class="org.hibernate.search.event.FullTextIndexCollectionEventListener"/>
 </event>
 <event type="post-collection-remove">
 <listener

class="org.hibernate.search.event.FullTextIndexCollectionEventListener"/>
 </event>
 <event type="post-collection-update">
 <listener

class="org.hibernate.search.event.FullTextIndexCollectionEventListener"/>
 </event>
 </session-factory>
</hibernate-configuration>

This event listener configuration looks pretty scary, but remember: You don’t even
need to think about it if you use Hibernate Annotations or Hibernate EntityManager
3.3.x or above, a good reason to move to these projects!

 We’ll discuss additional Hibernate Search parameters when the need arises, but
what you know right now is more than enough to get started and suits a great many
production systems.

2.3 Mapping the domain model
Now that Hibernate Search is configured properly, we need to decide which entity
and which property will be usable in our full-text searches. Indexing every single
entity and every single property doesn’t make much sense. Putting aside that such a
strategy would waste CPU, index size, and performance, it doesn’t make a lot of busi-
ness sense to be able to search a DVD by its image URL name. Mapping metadata will
help define what to index and how: It will describe the conversion between our object-
oriented domain object and the string-only flat world of Lucene indexes.

 Hibernate Search expresses this mapping metadata through annotations. The
choice of annotations was quite natural to the Hibernate Search designers because
the metadata is closely related to the Java class structure. Configuration by exception
is used extensively to limit the amount of metadata an application developer has to
define and maintain.

2.3.1 Indexing an entity

Let’s go practical now. What’s needed to make a standard entity (a mapped plain old
Java object [POJO] really) full-text searchable? Let’s have a look at listing 2.6.

Collection event
listener differs

39Mapping the domain model

package com.manning.hsia.dvdstore.model;

@Entity
@Indexed
public class Item {

 @Id @GeneratedValue
 @DocumentId
 private Integer id;

 @Field
 private String title;

 @Field
 private String description;

 @Field(index=Index.UN_TOKENIZED, store=Store.YES)
 private String ean;

 private String imageURL;
 //public getters and setters
}

The first thing to do is to place an @Indexed annotation on the entity that will be
searchable through Hibernate Search. In the previous section, you might have
noticed that nowhere did we provide a list of indexed entities. Indeed, Hibernate
Search gathers the list of indexed entities from the list of persistence entities marked
with the @Indexed annotation, saving you the work of doing it manually. The index for
the Item entity will be stored in a directory named com.manning.hsia.dvd-
store.model.Item in the indexBase directory we configured previously. By default,
the index name for a given entity is the fully qualified class name of the entity.

 The second (and last) mandatory thing to do is to add a @DocumentId on the
entity’s identity property. Hibernate Search uses this property to make the link
between a database entry and an index entry. Hibernate Search will then know
which entry (document in the Lucene jargon) to update in the index when an item
object is changed. Likewise, when reading results from the index, Hibernate Search
will know to which object (or database row) it relates. That’s it for the necessary
steps: Add @Indexed on the entity, and add @DocumentId on the identifier property.
But of course, as it is, it wouldn’t be really useful since none of the interesting prop-
erties are indexed.

2.3.2 Indexing properties

To index a property, we need to use an @Field annotation. This annotation tells
Hibernate Search that the property needs to be indexed in the Lucene document.
Each property is indexed in a field that’s named after the property name. In our
example, the title, description, and ean properties are indexed by Lucene in,
respectively, the title, description, and ean fields. While it’s possible to change the

Listing 2.6 Mapping a persistent POJO

Mark for indexing

Mark id property shared
by Core and Search

Mark for indexing using
tokenization

Mark for
indexing
without
tokenization

This property is not
indexed (default)

40 CHAPTER 2 Getting started with Hibernate Search
default Lucene field name of a property, it’s considered a bad practice and will make
querying more unnatural, as you’ll see in the query section of this chapter. imageURL,
which is not marked by @Field, won’t be indexed in the Lucene document even if
Hibernate stores it in the database.

NOTE An object instance mapped by Hibernate roughly corresponds to a table
row in the database. An object property is roughly materialized to a table
column. To make the same analogy in the Lucene index, an object
instance mapped by Hibernate roughly corresponds to a Lucene docu-
ment, and an object property is roughly materialized to a Lucene field in
the document. Now take this analogy with a grain of salt because this one-
to-one correspondence isn’t always verified. We’ll come to these more
exotic cases later in this book.

The ean property is indexed slightly differently than the others. While we still use
@Field to map it, two new attributes have been defined. The first one, index, specifies
how the property value should be indexed. While we have decided to chunk title and
description into individual words to be able to search these fields by word (this pro-
cess is called tokenization), the ean property should be treated differently. EAN, which
stands for European Article Number, is the article bar code that you can see on just
about any product sold nowadays. EAN is a superset of the UPC (Universal Product
Code) used in North America. It would be fairly bad for the indexing process to
tokenize a unique identifier because it would be impossible to search by it. That’s why
the index attribute is set to Index.UN_TOKENIZED; the EAN value won’t be chunked
during the indexing process.

 The second particularity of the ean property is that its value will be stored in the
Lucene index. By default, Hibernate Search doesn’t store values in the index because
they’re not needed in most cases. As a result, the Lucene index is smaller and faster.
In some situations, though, you want to store some properties in the Lucene index,
either because the index is read outside of Hibernate Search or because you want to
execute a particular type of query—projection—that we’ll talk about later in the book.
By adding the store attribute to Store.YES in the @Field annotation, you ask Hiber-
nate Search to store the property value in the Lucene index.

 The example shows annotations placed on fields. This isn’t mandatory; you can
place annotations on getters as well. If the annotation is on the getter, Hibernate
Search will access the property value through the getter method. Indeed, this is the
authors’ preferred access strategy. To keep the example as short and readable as possi-
ble, this book will show annotations only on fields.

NOTE SHOULD I USE GETTER OR FIELD ACCESS? There’s no performance impact
in using one or the other, nor is there any advantage with regard to
Hibernate Search. Choosing is more a matter of architectural taste. The
authors tend to prefer getter access because it allows an abstraction over
the object state. Also, the Java Persistence specification requires accessing
data through getters for maximum portability. In any case, consistency is

41Mapping the domain model
the rule you should follow. Try to use the same access strategy for both
Hibernate Core and Hibernate Search, because it will save you from
some unwanted surprises.

We’ll now show how to use Hibernate Search on an existing XML-based mapping
structure (hbm.xml files).

2.3.3 What if I don’t use Hibernate Annotations?

The previous example shows the use of Hibernate Search in conjunction with Hiber-
nate Annotations, but the same example would work perfectly with hbm.xml files as
well. This is particularly useful if you try to use Hibernate Search on an existing
Hibernate Core–based application where the mapping is defined in XML. Have a
look at listing 2.7.

package com.manning.hsia.dvdstore.model;

@Indexed
public class Item {

 @DocumentId
 private Integer id;

 @Field
 private String title;

 @Field
 private String description;

 @Field(index=Index.UN_TOKENIZED, store=Store.YES)
 private String ean;

 private String imageURL;
 //public getters and setters
}

<hibernate-mapping package="com.manning.hsia.dvdstore.model">
 <class name="Item">
 <id name="id">
 <generator class="native"/>
 </id>
 <property name="title"/>
 <property name="description"/>
 <property name="ean"/>
 <property name="imageURL"/>
 </class>
</hibernate-mapping>

It’s currently not possible to express the Hibernate Search metadata using an XML
descriptor, but it might be added to a future version of the product, depending on
user demand.

Listing 2.7 Mapping a persistent POJO using an hbm.xml file

No Java Persistence
annotations are
present

Mapping externalized
in hbm.xml files

42 CHAPTER 2 Getting started with Hibernate Search
2.4 Indexing your data
We’ve just shown how the object model will be mapped into the index model, but we
haven’t addressed when the object model is indexed. Hibernate Search listens to
Hibernate Core operations. Every time an entity marked for indexing is persisted,
updated, or deleted, Hibernate Search is notified. In other words, every time you per-
sist your domain model to the database, Hibernate Search knows it and can apply the
same changes to the index. The index stays synchronized with the database state auto-
matically and transparently for the application. That’s good news for us because we
don’t have anything special to do!

 What about existing data? Data already in the database may never be updated, and
so Hibernate Search will then never be able to receive a notification from Hibernate
Core. Because in most scenarios the index needs to be initially populated with exist-
ing and legacy data, Hibernate Search proposes a manual indexing API.

 This is our first look at the Hibernate
Search API. Hibernate Search extends the
Hibernate Core main API to provide
access to some of the full-text capabilities.
A FullTextSession is a subinterface of
Session. Similarly, a FullTextEntityMan-
ager is a subinterface of EntityManager
(see figure 2.1). Those two subinterfaces
contain the same methods and especially
the one interesting us at the moment: the
ability to manually index an object.

 Where can we get an instance of theses interfaces? Internally, the FullTextEnti-
tyManager and FullTextSession implementations are wrappers around an Entity-
Manager implementation or a Session implementation. Hibernate Search provides a
helper class (org.hibernate.search.jpa.Search) to retrieve a FullTextEntityMan-
ager from a Hibernate EntityManager as well as a helper class to retrieve a Full-
TextSession from a Session (org.hibernate.search.Search). Listing 2.8 shows
how to use these helper classes.

Session session = ...;
FullTextSession fts =
 org.hibernate.search.Search.getFullTextSession(session);

EntityManager em = ...;
FullTextEntityManager ftem =
 org.hibernate.search.jpa.Search.getFullTextEntityManager(em);

Listing 2.8 Retrieving a FullTextSession or a FullTextEntityManager

Figure 2.1 FullTextSession and
FullTextEntityManager extend Session
and EntityManager, respectively.

Wrap a
Session
object

Wrap an
EntityManager

object

43Querying your data
NOTE getFullTextSession and getFullTextEntityManager were named cre-
ateFullTextSession and createFullTextEntityManager in Hibernate
Search 3.0.

The two full-text APIs have a method named index whose responsibility is to index or
reindex an already persistent object. Let’s see in listing 2.9 how we would index all the
existing items.

FullTextEntityManager ftem = Search.getFullTextEntityManager(em);

ftem.getTransaction().begin();

@SuppressWarnings("unchecked")
List<Item> items = em.createQuery("select i from Item i").getResultList();

for (Item item : items) {
 ftem.index(item);
}

ftem.getTransaction().commit();

In this piece of code, items is the list of Item objects to index. You’ll discover in sec-
tion 5.4.2 a more efficient solution to massively indexing data, but this one will be
good enough for now. The index method takes an item instance and indexes it. The
Lucene index will thus contain the necessary information to execute full-text queries
matching these items. The initial dataset indexed, subsequent changes, and whether it
is item creation, item update, or item deletion will be taken care of by the Hibernate
event system. The index and the database stay synchronized.

 We now have an up-to-date index ready to be queried, which leads to the next
question: How do I query data using Hibernate Search?

2.5 Querying your data
Hibernate Search tries to achieve two somewhat contradictory goals:

■ Provide a seamless integration with the Hibernate Core API and programmatic
model

■ Give the full power and flexibility of Lucene, the underlying full-text engine

To achieve the first goal, Hibernate Search’s query facility integrates into the Hiber-
nate query API (or the Java Persistence query API if you use the EntityManager). If
you know Hibernate Core, the query-manipulation APIs will look very familiar to you;
they’re the same! The second key point is that Hibernate Search returns Hibernate
managed objects out of the persistence context; in more concrete terms it means that
the objects retrieved from a full-text query are the same object instances you would
have retrieved from an HQL query (had HQL the same full-text capabilities). In partic-
ular, you can update those objects, and Hibernate will synchronize any changes to the

Listing 2.9 Manually indexing object instances

Manually index an
item instance

Index is written at
commit time

44 CHAPTER 2 Getting started with Hibernate Search
database. Your objects also benefit from lazy loading association and transparent
fetching with no additional work on the application programmer’s side.

NOTE WHAT IS A PERSISTENCE CONTEXT? While the Hibernate Session is the
API that lets you manipulate the object’s state and query the database, the
persistence context is the list of objects Hibernate is taking care of in the
current session lifecycle. Every object loaded, persisted, or reattached by
Hibernate will be placed into the persistence context and will be checked
for any change at flush time. Why is the persistence context important?
Because it’s responsible for object unicity while you interact with the ses-
sion. Persistence contexts guarantee that a given entry in the database is
represented as one object and only one per session (that is, per persis-
tence context). While usually misunderstood, this is a key behavior that
saves the application programmer a lot of trouble.

To achieve the second goal, Hibernate Search doesn’t try to encapsulate how Lucene
expresses queries. You can write a plain Lucene query and pass it to Hibernate Search
as it is.

 Let’s walk through the steps to create a query and retrieve the list of matching
objects. For Lucene beginners, don’t worry; no prerequisite knowledge of Lucene is
necessary. We’ll walk with you each and every step.

2.5.1 Building the Lucene query

The first thing we need to do is determine
what query we’re willing to execute. In
our example, we want to retrieve all items
matching a given set of words regardless
of whether they are in the title proper-
ties or the description properties. The
next step is to write the Lucene query
associated with this request. We have a few
ways to write a Lucene query. For starters,
we’ll use the simpler-to-understand query parser solution. Lucene comes bundled with
an example of a query parser that takes a string as a parameter and builds the underly-
ing Lucene query from it. The full description of the query syntax is available in any
Lucene distribution at docs/queryparsersyntax.html, but let’s have a quick look at it.
Figure 2.2 describes the components of a query.

 A query is composed of terms to look for (words) targeted in a given Lucene docu-
ment field. The field name is followed by a colon (:) and the term to look for. To query
more than one term, Boolean operators such as OR, AND, or NOT (they must be capital-
ized) can be used between terms. When building a query parser, a default field name
is provided. If the term is not preceded by a field name, the default field name applies.
When you need to apply some approximation searching to a word (maybe because you
don’t know the exact spelling), it needs to be followed by a tilde (~). For example:

Figure 2.2 Query parser syntax

45Querying your data
title:hypernate~ OR description:persistence

To learn more about the Lucene query syntax, have a look at chapter 7, the Lucene
documentation, or the excellent book Lucene in Action by Erik Hatcher and Otis
Gospodnetic̀.

 How does a field map back to our domain model mapping? Hibernate Search
maps each indexed property into a field of the same name (unless you explicitly over-
ride the field name). This makes a query quite natural to read from an object-oriented
point of view; the property title in our Item class can be queried by targeting the
title field in a Lucene query. Now that we can express our queries, let’s see how to
build them (listing 2.10).

NOTE You might be afraid that the query syntax is not one your customer is will-
ing or even able to use. The Lucene query parser is provided here to give
you a quick start. Most public-faced applications define their own search
syntax and build their Lucene queries programmatically. We’ll explore
this approach later in this book.

String searchQuery = "title:Batman OR description:Batman";

QueryParser parser = new QueryParser(
 "title",
 new StandardAnalyzer()
);

org.apache.lucene.search.Query luceneQuery;
try {
 luceneQuery = parser.parse(searchQuery);
}
catch (ParseException e) {
 throw new RuntimeException("Unable to parse query: " + searchQuery, e);
}

Once you’ve expressed the query as a string representation, building a Lucene query
with the query parser is a two-step process. The first step is to build a query parser,
define the default field targeted in the query, and define the analyzer used during the
query building. The default field is used when the targeted fields are not explicit in
the query string. It turns out that the authors don’t use this feature very often. Next
we’ll present a more interesting solution. Analyzers are a primary component of
Lucene and a key to its flexibility. An analyzer is responsible for breaking sentences
into individual words. We’ll skip this notion for now and come back to it in greater
detail in section 5.2, when you will be more familiar with Hibernate Search and
Lucene. The query parser is now ready and can generate Lucene queries out of any
syntax-compliant query string. Note that the query hasn’t yet been executed.

 Lucene provides an improved query parser that allows you to target more than one
field at a time automatically. Because Hibernate Search, by default, matches one prop-
erty to one Lucene field, this query parser turns out to be very useful as a way to finely
target which property to search by. Let’s see how to use it (see listing 2.11).

Listing 2.10 Building a Lucene query

Query string

Build a
query parserDefault

fieldAnalyzer
used

Build Lucene query

46 CHAPTER 2 Getting started with Hibernate Search

String searchQuery = "Batman";
String[] productFields = {"title", "description"};

Map<String,Float> boostPerField = new HashMap<String,Float>(2);
boostPerField.put("title", (float) 4);
boostPerField.put("description", (float) 1);

QueryParser parser = new MultiFieldQueryParser(
 productFields,
 new StandardAnalyzer(),
 boostPerField
);

org.apache.lucene.search.Query luceneQuery;
try {
 luceneQuery = parser.parse(searchQuery);
}
catch (ParseException e) {
 throw new RuntimeException("Unable to parse query: " + searchQuery, e);
}

The MultiFieldQueryParser allows you to define more than one default field at a
time. It becomes very easy to build queries that return all objects matching a given
word or set of words in one or more object properties. In our example, the query will
try to find Batman in either the title or the description field. The MultiFieldQuery-
Parser also allows you to express the intuitive idea that title is more important than
description in the query results. You can assign a different weight (also called boost fac-
tor) to each targeted field.

2.5.2 Building the Hibernate Search query

Our Lucene query is now ready to be executed. The next step is to wrap this query
into a Hibernate Search query so that we can live in the full object-oriented paradigm.
We already know how to retrieve a FullTextSession or FullTextEntityManager from
a regular Session or EntityManager. A FullTextSession or a FullTextEntityMan-
ager is the entry point for creating a Hibernate Search query out of a Lucene query
(see listing 2.12).

FullTextSession ftSession = Search.getFullTextSession(session);

org.hibernate.Query query = ftSession.createFullTextQuery(
 luceneQuery,
 Item.class);

query = ftSession.createFullTextQuery(
 luceneQuery);

query = ftSession.createFullTextQuery(
 luceneQuery,
 Item.class,
 Actor.class);

Listing 2.11 Using the MultiFieldQueryParser

Listing 2.12 Creating a Hibernate Search query

Targeted fields

Boost
factors

Build
multifield
query parser

Return matching Items

Return all matching indexed entities

Return matching
Items and Actors

47Querying your data
FullTextEntityManager ftEm =
Search.getFullTextEntityManager(entityManager);

javax.persistence.Query query = ftEm.createFullTextQuery(
 luceneQuery,
 Item.class);

javax.persistence.Query query = ftEm.createFullTextQuery(
 luceneQuery);

javax.persistence.Query query = ftEm.createFullTextQuery(
 luceneQuery,
 Item.class,
 Actor.class);

The query-creation method takes the Lucene query as its first parameter, which isn’t
really a surprise, but it also optionally takes the class targeted by the query as an addi-
tional parameter (see our first example). This method uses a Java 5 feature named
varargs. After the mandatory Lucene query parameter, the method can accept any
number of Class parameters (from zero to many). If no class is provided, the query
will target all entities indexed. If one or more classes are provided, the query will be
limited to these classes and their subclasses (Hibernate Search queries are polymor-
phic, just like Hibernate Query Language [HQL] queries). While most queries target
one class, it can be handy in some situations to target more than one entity type and
benefit from the unstructured capabilities of Lucene indexes. Note that by restricting
the query to a few entity types (and especially one entity type), Hibernate Search can
optimize query performance. This should be your preferred choice.

 The second interesting point to note is that the query objects are respectively of
type org.hibernate.Query or javax.persistence.Query (depending whether you
are targeting the Hibernate APIs or the Java Persistence APIs). This is very interesting
because it enables a smooth integration with existing Hibernate applications. Any-
body familiar with Hibernate or Java Persistence’s queries will have no problem exe-
cuting the query from this point.

2.5.3 Executing a Hibernate Search query

Executing and interacting with a Hibernate Search query is exactly like executing and
interacting with an HQL or Java Persistence Query Language (JPA-QL) query simply
because they share the same concepts and the same APIs.

 Listing 2.13 demonstrates this.

//Hibernate Core Query APIs
query.setFirstResult(20).setMaxResults(20);
List results = query.list();

//Java Persistence Query APIs
query.setFirstResult(20).setMaxResults(20);
List results = query.getResultList();

Listing 2.13 Executing a Hibernate Search query

Return
matching Items

Return all matching
indexed entities

Return matching
Items and Actors

Set pagination
Execute the query

Set pagination
Execute
the query

48 CHAPTER 2 Getting started with Hibernate Search
for (Item item : (List<Item>) results) {
 display("title: " + item.getTitle() + "\nDescription: " +

 item.getDescription());
}

There’s no difference here between executing an HQL or JPA-QL query and executing
a Hibernate Search query. Specifically, you can use pagination as well as execute the
query to return a list, an iterator, or a single result. The behavior and semantic are the
same as for the classic queries. Specifically, the returned result is composed of objects
from your domain model and not Documents from the Lucene API.

 The objects returned by the query are part of the Hibernate persistence context.
Hibernate will propagate every change made to the returned objects into the database
and the index transparently. And, more important, navigating through lazy associa-
tions (collections or single-ended associations) is possible transparently, thanks to
Hibernate.

 While building a query seems like a lot of steps, it’s a very easy process. In summary:

1 Build the Lucene query (using one of the query parsers or programmatically).
2 Wrap the Lucene query inside a Hibernate Search query.
3 Optionally set some query properties (such as pagination).
4 Execute the query.

Unfortunately (or fortunately. if you like challenges), queries don’t always return what
you expect them to return. This could be because indexing didn’t happen, or the
query you’ve written doesn’t do what you think it should. A tremendously useful tool
is available that allows you to have an inside look at the Lucene index and see what
queries return. Its name is Luke.

2.6 Luke: inside look into Lucene indexes
The most indispensable utility you can have in your arsenal of index troubleshooting
tools—in fact it may be the only one you need—is Luke. With it you can examine every
facet of an index you can imagine. Some of its capabilities are these:

■ View individual documents.
■ Execute a search and browse the results.
■ Selectively delete documents from the index.
■ Examine term frequency.

Luke’s author is Andrzej Bialecki, and he actively maintains Luke to keep up with
the latest Lucene version. Luke is available for download at http://www.getopt.org/
luke/, shown in figure 2.3. You can download Luke in several different formats. A
Java WebStart JNLP direct download of the most current version is the easiest to
retrieve; it’s basically automatic. You can also download several .jar file compilations
and place them in your classpath any way you want them.

■ lukeall.jar—Contains Luke, Lucene, Rhino JavaScript, plug-ins, and additional
analyzers. This JAR has no external dependencies. Run it with java -jar luke-
all.jar.

http://www.getopt.org/

49Luke: inside look into Lucene indexes
■ lukemin.jar—A standalone minimal JAR, containing Luke and Lucene. This JAR
has no external dependencies either. Run it with java -jar lukemin.jar.

■ Individual jars:
■ luke.jar
■ lucene-core.jar
■ lucene-analyzers.jar
■ lucene-snowball.jar
■ js.jar

Minimum requirements are that at least the core JARs be in your classpath, for exam-
ple, java -classpath luke.jar;lucene-core.jar org.getopt.luke.Luke. Be care-
ful to use the right Luke version for your Lucene version, or Luke might not be able
to read the Lucene index schema.

 Luke’s source code is also available for download from the website shown in
figure 2.3 for those of you who want to dig into the real workings of the application.

Figure 2.3 Luke’s website with download links in various formats along with source code downloads

50 CHAPTER 2 Getting started with Hibernate Search
 Let’s go on the fifty-cent tour of Luke. We’ll start with figure 2.4. The Overview tab
is the initial screen when Luke is first started.

B The Path field contains the operating system path to the index’s location and
modes you can choose to open the index. A convenient filesystem browser makes nav-
igation easier. Utilizing open modes, you can force unlock on an index that may be
locked. This could be useful from an administration point of view. Also, you can open
the index in read-only mode to prevent making accidental changes. An advanced
option allows you to open the index using an MMapDirectory instance, which uses
nonblocking I/O (NIO) to memory map input files. This mode uses less memory per
query term because a new buffer is not allocated per term, which may help applica-
tions that use, for example, wildcard queries.

 Behind this subwindow you can see the other tabs: Overview, Documents, Search,
Files, and Plugins, which are all coming up shortly. Let’s move on to the Overview tab.
Looking at figure 2.5, you can see a wealth of information in this tab alone.

Figure 2.4 Luke’s opening screen containing the index path and modes to open it

51Luke: inside look into Lucene indexes

B The top section is a comprehensive listing of the index’s statistics, including last
modification date, total number of documents in the index, number of fields, and so
on. C is the Re-open button.

NOTE Documents deleted or updated (a delete followed by an insert in
Lucene) are not seen until the index is reopened. When you open an
index, you have a snapshot of what was indexed at the time it was
opened.

A list of all available fields in the documents is shown at D. The field name is the
string enclosed in brackets.

 E is an ordered listing, from the most frequently occurring to the least, of the top
terms in the index. From this quadrant of the tab you can do several things. Double-
clicking a term transfers you to the Documents tab (we’ll talk about that tab next) and
automatically inserts the term you double-clicked into the Browse by Term text box.
Right-clicking a term in this quadrant gives you several options. Browse Term Docs
does the same thing as double-clicking the term: It transfers you to the Documents tab
and automatically inserts the term you double-clicked into the Browse by Term text

Figure 2.5 The Overview tab showing the index’s statistics, fields, and an order ranking of the top
terms in the index

52 CHAPTER 2 Getting started with Hibernate Search
box. Show All Term Docs transfers you to the Search tab (we’ll talk about that shortly)
and automatically inserts a search based on the Field and Text data in D.

 Let’s move on to the next tab in Luke, the Documents tab. This is shown in
figure 2.6.

C allows you to browse the index’s documents by stepping through them one at a
time. They are ordered by Lucene’s internal document number. You can even add,
edit, and delete individual documents by using this quadrant of the tab. The Edit Doc-
ument screen is shown in figure 2.7. Here you can edit any field in the document. The
Stored Original tab will show you the data stored in the index for this document’s
selected field.

NOTE If the data is not stored in the index via the Store.YES or Store.COM-
PRESS setting, you won’t be able to access that data because it’s simply not
there! You’ll see <not available> instead.

Figure 2.6 The Documents tab, where documents can be stepped through, deleted, and examined

53Luke: inside look into Lucene indexes

One of the really neat features here is the Tokenized tab. For fields that do store their
data in the index, this tab shows the tokenized text based on the analyzer used to
index the field.

 This is all well and good, but suppose we wanted to browse the index by its terms in
term order and not in the order of frequency, as listed in the Documents tab. This is
done in the upper-right quadrant D (in figure 2.6) of the tab, Browse by Term, but is
not as straightforward as it sounds. Clicking First Term takes you to the first term for
that field in the index (alphabetical, numbers first). Of course, Next Term continues
forward. Below this button is the document browser. Clicking First Doc takes you to the
first document B containing the term in the Browse by Term text box we just talked
about. The Show All Docs button takes you to the Search Tab and automatically inserts
a search for that field and term in the search window.

NOTE Be careful with the Delete All Docs button. Be positive about which index
you have open before clicking this button. It would be a sad day if you
forgot you were looking at the production index!

You may have noticed several terms scattered about this tab like Doc freq of this term and
Term freq in this doc. We’ll explain these terms and use them a lot in chapter 12, but for
now, don’t worry about them. Their meaning will become clear, and they’ll mean a lot
more then.

Figure 2.7 The Luke Edit Document screen showing the Stored Original tab

54 CHAPTER 2 Getting started with Hibernate Search
 We’re finally going to discuss the Search tab. This is important because the authors
find themselves on this tab the vast majority of time when they’re testing the effect of
different analyzers, what the stop word effect will be, and the general behavior of a
query. Figure 2.8 shows this tab.

B is the search window. Here you enter search expressions based on the current
index. Searches are expressed utilizing the Lucene query parser syntax. In this exam-
ple the search is for two terms, both of which must occur in the Description field, and
both terms are required (that’s what the + signs indicate). A complete discussion of
the syntax is given on the Lucene website at http://lucene.apache.org/java/docs/
queryparsersyntax.html or in the Lucene documentation available in each distribu-
tion. We’ll also cover the essential part of this syntax in chapter 7. You must specify the
field name of a term (using the field_name: syntax) if you wish to query a different
field than the one specified in the Default field just under E. The uses of the +, -, ~
and other symbols are explained on the website.

Figure 2.8 The Search tab showing the search window, details, and the results window

http://lucene.apache.org/java/docs/

55Luke: inside look into Lucene indexes
 After you enter your query in B, select the analyzer E to use to parse your query.
The default analyzers supported by Luke are:

■ StandardAnalyzer
■ StopAnalyzer
■ WhitespaceAnalyzer
■ SimpleAnalyzer

When Luke initializes, it looks in the classpath for any additional analyzers and adds
them to the drop-down list. That’s how you can test any analyzer that you may have
written. All you have to do then is select it from the drop-down list. Then click the
Update button between B and C, and the parsed query will be shown in the Parsed
window C. We strongly recommend you get into the habit of doing this because,
many times, the analyzer does things a little differently than you think it would. This
will save you from heartaches.

 The Search button F executes the search displayed in C against the current
index and displays the search results in D. In this example, a search on the Descrip-
tion field for salesman and reeves resulted in one matching document, with Lucene ID
108. Double-clicking any matching document will take you back to the Documents
tab, with the appropriate information concerning that document being displayed,
such as the document number and a vertical listing of the document’s fields. Also at
F is the Explain button. Clicking this button brings up the Explain window, shown in
figure 2.9.

 This window shows how the score of a document was calculated against a particular
query and what factors were considered. This may not mean much to you now, but
when you get into the middle of chapter 12 and we show you exactly what this pro-
vides, you’ll appreciate it much more. This is especially true if you’re one of those who
want to modify the way documents are scored.

 The next-to-last tab of Luke is the Files tab, shown in figure 2.10. From an adminis-
tration point of view, this presents a lot of information. First, the Total Index Size
value could be important for disk space considerations. Below that is a listing of all the

Figure 2.9 The Explain window
showing how the document’s
score was calculated

56 CHAPTER 2 Getting started with Hibernate Search
files associated with the index. There are no right-clicks or double-clicks here. What
you see is what you get. This file listing helps with determining whether or not the
index needs to be optimized.

Remember, the greater the number of segment files (.cfs), the slower searches
become, so be sure to optimize. How often you optimize depends on several factors,
but this tab will help you determine how often you will need to do it. For more infor-
mation about optimization, check out section 9.3.

Figure 2.10 This is a listing of all files associated with the currently open index

57Luke: inside look into Lucene indexes
 Our last Luke tab is the Plugins tab. This is the developer’s tab. Five items on this
tab will help you accomplish several things. We’re going to show only two of these tabs
because they apply more to the discussions we’re going to have later in the book.
Figure 2.11 shows the Custom Similarity plug-in; this allows you to design and test
your own Similarity object which enables you to implement your own document scor-
ing mechanism. You will learn all about this in detail in chapter 12.

Figure 2.11 The Custom Similarity Designer selection on the Plugins tab

58 CHAPTER 2 Getting started with Hibernate Search
 Figure 2.12 shows the Analyzer Tool. This lets you examine exactly how a particu-
lar analyzer affects the text that’s put into an index.

B is a drop-down list of all analyzers found in the classpath. Picking a particular ana-
lyzer and clicking the Analyze button will display a list of tokens D generated by that
analyzer from the text you enter in the text window C. This makes it quite easy to test
an analyzer to see if it generates the tokens you thought it would. Clicking one of the
tokens, then clicking the Hilite button will cause that token to be highlighted in the
Original Text window E.

WARNING Luke has several known issues when the Java Network Launching Pro-
tocol (JNLP) version is used. These are enumerated on the Luke
download page. One of these issues is recognizing analyzers on the
classpath. When you work with analyzers, the authors recommend
that you download one of the standalone Luke versions and work
with it.

Figure 2.12 The Analyzer Tool tab for examining how analyzers change text put into indexes

59Summary
The best recommendation we can give you for learning how these plug-ins work (and
in case you want to write one yourself) is to study Luke’s documentation and especially
the various plug-ins’ source code. Remember, Luke’s source code is also available for
download from the website.

 That’s all for Luke right now. Luke is your best friend in the full-text query jungle,
so use it!

2.7 Summary
In chapter 1 you saw some of the issues that arise when you try to integrate domain
model-centric applications and full-text search technologies (and in particular
Lucene). These problems were threefold: a structural mismatch, a synchronization
mismatch, and a retrieval mismatch. From what you’ve seen so far, does Hibernate
Search address all these problems?

 The first problem we faced was the structural mismatch. The structural mismatch
comes in two flavors:

■ Convert the rich object-type structure of a domain model into a set of strings.
■ Express the relationship between objects at the index level.

Hibernate Search addresses the first problem by allowing you to annotate which prop-
erty and which entity need to be indexed. From them, and thanks to sensitive defaults,
Hibernate Search builds the appropriate Lucene indexes and converts the object
model into an indexed model. The fine granularity is a plus because it helps the appli-
cation developer to precisely define what Lucene needs to process and in which con-
dition. This getting-started guide did not show how Hibernate Search solves the
relationship issue, because we have to keep a few subjects for the rest of the book.
Don’t worry; this problem will be addressed.

 The second mismatch involved synchronization: how to keep the database and the
index synchronized with each other. Hibernate Search listens to changes executed by
Hibernate Core on indexed entities and applies the same operation to the index.
That way, the database and index are kept synchronized transparently for the applica-
tion developer. Hibernate Search also provides explicit indexing APIs, which are very
useful for filling the index initially from an existing data set.

 The third mismatch was the retrieval mismatch. Hibernate Search provides a
match between the Lucene index field names and the property names (out of the
box), which helps you to write Lucene queries. The same namespace is used in the
object world and the index world. The rest of the Lucene query is entirely up to the
application developer. Hibernate Search doesn’t hide the underlying Lucene API in
order to keep intact all the flexibility of Lucene queries. However, Hibernate Search
wraps the Lucene query into a Hibernate query, reusing the Hibernate or Java Persis-
tence APIs to provide a smooth integration into the Hibernate query model. Hiber-
nate Search queries return domain model objects rather than Lucene Document
instances. Beyond the API alignment, the semantics of the retrieved objects are similar

60 CHAPTER 2 Getting started with Hibernate Search
between an HQL query and a full-text query. This makes the migration from one strat-
egy to the other very simple and targeted.

 Other than the fundamental mismatches, Hibernate Search doesn’t require any
specific configuration infrastructure as it integrates into the Hibernate Core configu-
ration scheme and lifecycle. It doesn’t require you to list all the indexed entities.
We’ve only started our exploration of Hibernate Search, but you can already feel that
this tool focuses on ease of use, has a deep integration with the persistence services,
and addresses the mismatch problems of integrating a full-text solution like Lucene
into a domain model-centric application.

 Hopefully, you want to know more about Hibernate Search and explore more of its
functionalities, and there’s a lot more to explore. The next chapters of the book are
all about making you an expert in Hibernate Search and helping you discover what it
can solve for you!

Part 2

Ending structural and
synchronization mismatches

In these next three chapters, you will discover how Hibernate Search indexes
your objects. Chapter 3 covers the concept of mapping and how to mark an
entity and its properties as indexed. Chapter 4, going deeper into the mapping
concept, describes how to map relationships between entities and unexpected
property types. Chapter 5 tells you where the index information is stored, when
and how index operations are performed, and what control you have over them.
This chapter also covers the notion of a text analyzer and its relationship to
advanced search techniques such as recovering from typos, phonetic approxima-
tion, and searching by synonym.

 While reading these chapters, you will index your domain model and set up
Hibernate Search to answer your searches.

Mapping simple
data structures
Chapter 2 gave us a very brief introduction to data mapping. This chapter will
explain in greater detail each basic mapping structure, the reasoning behind it,
and more important, in which situation it is useful. You will learn how to declare an
entity as indexable, which properties are indexed in this entity, and what kind of
indexing strategy is used. But before that, let’s see why mapping is required.

This chapter covers
■ Index mapping of an entity class and its identity

property
■ Index mapping of properties (built-in bridge,

indexing strategy)
■ Using an analyzer
63

64 CHAPTER 3 Mapping simple data structures
3.1 Why do we need mapping, again?
The world in which our primary data structure lives (the object-oriented domain
model) has a completely different model than the index structure. Let’s talk about a
few of the differences highlighted by figure 3.1 and see how those contradictions can
be solved.

 An object-oriented domain model in Java has a few notable characteristics:

■ It is polymorphic. A class can inherit the structure from a superclass.
■ It has a strong type system. Each attribute of a class has a type that precisely rep-

resents the data. In particular, different data types aren’t interchangeable.
■ It has a rich and extensible type system. Types can be any of the many built-in types

provided by the JRE or a custom one. Specifically, any program can define its
own classes.

The Lucene index structure is much more monotonous. An entry is roughly struc-
tured as a map (a Document in Lucene terminology) containing key value string pairs.
Each entry in the Lucene Document is called a Field, and the key is the Field name.
Readers familiar with Lucene probably have noticed that this description oversimpli-
fies the actual Lucene model, but it’s nevertheless a good first-level approximation.
We encourage the curious reader to grab Lucene in Action for more information.

 Let’s highlight some differences with the object model:
■ It is not typed. Everything is essentially a string.
■ The type model is not extensible. It is not possible to define a custom Field type.
■ It is not hierarchical. There is no relation between Lucene documents, in partic-

ular, no hierarchical relation.
■ It is unstructured. Two different documents in the same index can contain dif-

ferent fields.

NOTE The authors do not imply that the object model is superior to the index
model. Both have their respective strengths. In particular, the unstruc-
tured nature of the index model provides a great deal of flexibility that’s
absolutely essential for a multipurpose search engine. As a matter of fact,
Hibernate Search heavily depends on the unstructured flexibility pro-
vided by Lucene.

Because the two models have conceptual differences in the way they represent data
(see figure 3.1), some conversion is necessary when representing the same data in the
two models.

 Let’s explore these differences and see how Hibernate Search reconciles them.
We’ll deal with three main issues: converting the overall structure, converting types,
and defining the fine-grained indexing strategy.

65Why do we need mapping, again?
3.1.1 Converting the structure

The coarse-grained element we want to index is the entity. In the object world, it is
represented as a class instance. Hibernate Search represents each class instance as a
Lucene Document instance, a Document being the atomic piece of information retriev-
able by a Lucene search. Queries will then retrieve entities corresponding to the Doc-
ument instances.

 Java classes can be subclassed and, thanks to that, inherit the data structure from
their superclass. Unfortunately, Lucene Documents have no notion of subclassing.
Even worse, it’s impossible to execute queries on correlated Documents because such a
notion doesn’t exist in Lucene. This isn’t a problem in practice, and Hibernate Search
maps each subclass instance in its own Document. The Document for a given subclass
will contain the data from the subclass attributes as well as the data from all the
mapped superclass’s attributes. Think of this mapping strategy as a denormalized
model. For people familiar with Hibernate’s inheritance-mapping strategies, you can
see this as equivalent to the table-per-concrete-class mapping strategy.

Figure 3.1 Converting the object model (rich type) into the index model (map of strings) leads to

66 CHAPTER 3 Mapping simple data structures
 You now know how Hibernate Search maps the coarse-grained structure of domain
models. Let’s discuss how each entity attribute is mapped into the Lucene world. Each
attribute or property considered to be indexed is mapped as a Lucene field whose
default name will be the property name. While the Lucene field name can be overrid-
den, as we will show later, the authors recommend you not do it because the one-to-
one mapping between a property name and a field name will make it easier both to
write and, more importantly, read Lucene queries.

 One-to-one mappings can be made between a property and a field, but how
does Hibernate Search convert the Java type into a string—the only type searchable
by Lucene?

3.1.2 Converting types

As previously described, the only type Lucene can “speak” is string. Unfortunately (or
fortunately, depending on how you see things), in Java, attributes can be of many dif-
ferent types. A URL is treated differently from a date or a number. Numbers are repre-
sented by different types depending on what they represent and their range of
expectation, from short for small integer numbers up to BigDecimal for arbitrary-
precision decimal numbers.

 Hibernate Search needs to convert each possible type into a string representation.
For that, Hibernate Search has the notion of field bridge: A field bridge is a bridge
between the Java type and its representation in the Lucene Field, or, to make it sim-
pler, a bridge between a Java object and its string representation.

 Hibernate Search comes with a set of built-in field bridges for most of the Java stan-
dard types. But it isn’t limited to them. In the next chapter we’ll explore how you can
further extend Hibernate Search support by writing a custom field bridge.

 Once a type is converted into a string, the value needs to be indexed.

What about null?
Hibernate Search, by default, doesn’t represent null attributes in the index. Lucene
doesn’t have the notion of null fields; the field is simply not there. Hibernate Search
could offer the ability to use a special string as a null marker to still be able to search
by “null” values.

But before you jump at the Hibernate Search team’s throats, you need to understand
why they have not offered this feature so far. Null is not a value per se. Null means
that the data is not known (or doesn’t make sense). Therefore, searching by null as
if it were a value is somewhat odd. The authors are well aware that this is a raging
debate, especially among the relational model experts (see http://en.wikipedia.org/
wiki/Null_%28SQL%29).

Whenever you feel the need to searching by “null,” ask yourself if storing a special
marker value in the database would make more sense. If you store a special marker
value in the database, a lot of the “null” inconsistencies vanish. It also has the side
effect of being queriable in Lucene and Hibernate Search.

http://en.wikipedia.org/

67Mapping entities
3.1.3 Defining the indexing strategy

We’ve pretty much described how Hibernate Search stores the object structure in the
index, but we haven’t considered how Lucene should index the data. Lucene offers
various strategies on how to index data. Each influences the kind of query that will be
available to you. It’s important to have a global understanding of these strategies and,
of course, to be able to choose among them. We’ll discuss those strategies while walk-
ing through the Hibernate Search mapping metadata.

 Even before thinking about the fine-grained indexing strategies, the first question
you should ask is, “Should I index this data?” Or more accurately, “Should I be able to
search by this data?” At a coarse-grained level, systematically indexing all your entities
makes little sense; only those useful for retrieving information searched by your users
should be marked for indexing. This is true as well at the fine-grained level. Not all
properties deserve to be indexed. While they could be indexed, and while a query
could easily filter them out, you should be aware that excluding them will speed up
the following:

■ Indexing time—Index time is directly correlated to the amount of data to index.
■ Search time—While the index size doesn’t linearly affect the search query time, it

has an influence.
■ Some clustering strategies—The smaller the index is, the faster replication will be.

Fortunately, Hibernate Search makes it intuitive during the mapping to select the rel-
evant part to index.

 Enough theory and concepts for now. Since we know why a mapping is needed,
let’s discover how to map the data structure. The next section will describe how to
map the coarse-grained level: an entity.

3.2 Mapping entities
Let’s describe the steps required to transform a boring Hibernate entity into a color-
ful indexed entity. To help us stay concrete, we’ll come back to the online store exam-
ple we started in chapter 2. We want to sell DVDs online; the DVD data structure is
represented by a Dvd class.

 We’ll first explore what makes an entity indexed and what is happening behind the
scenes.

3.2.1 Marking an entity as indexed

All Hibernate Search mapping metadata are described through annotations.

NOTE WHY USE ANNOTATIONS? Hibernate Search metadata is very code-centric
and shares a lot of information with the class structure: Annotations are a
natural fit and avoid much redundancy compared to other metadata
models such as XML. It would be quite simple to add XML deployment
descriptor support for Hibernate Search. Nobody has found the time and
interest to write this layer (so far), which seems to indicate that the
Hibernate Search community doesn’t strongly desire this feature.

68 CHAPTER 3 Mapping simple data structures
NOTE All Hibernate Search annotations are contained in the org.hiber-
nate.search.annotations package.

To mark an entity as indexed by Hibernate Search, place the @Indexed annotation on
the class, as shown in listing 3.1.

@Entity
@Indexed
public class Dvd {
 ...
}

Much information is inferred, and a lot of work is triggered from this single annota-
tion. When the Hibernate SessionFactory bootstraps, Hibernate Search looks for all
mapped entities marked as @Indexed and processes them. We don’t have to explicitly
list the indexed entities in a configuration file. This reduces work and limits the risk
of mistakes.

 The Lucene directory name is also inferred from this annotation. Because we
haven’t explicitly defined an index name, the default naming convention applies. The
index name is the fully qualified class name of the entity, in our example com.man-
ning.hsia.dvdstore.model.Dvd. You can override this name by using the name attri-
bute of @Indexed (see Listing 3.2).

@Entity
@Indexed(name="Item")
public class Dvd {
 ...
}

The underlying mapping between a Hibernate Search index name and a physical
Lucene Directory depends entirely on the directory provider (see section 5.1). Let’s
explore the two most common scenarios: the in-memory directory provider (RAM-
DirectoryProvider) and the filesystem directory provider (FSDirectoryProvider).

 Indexes using the RAMDirectoryProvider are uniquely identified by their index
name for a given SessionFactory (EntityManagerFactory if you use Java Persis-
tence). Hibernate Search keeps one instance of RAMDirectoryProvider per index
name and per SessionFactory (or EntityManagerFactory).

 When using FSDirectoryProvider, the index name represents the path to the
physical filesystem directory. Relative paths are prefixed with the indexBase property.

 It’s perfectly safe to share the same physical Lucene directory among several enti-
ties; Hibernate Search partitions the information. If you want to share the same physi-
cal Lucene directory across several entities, they need to share the same
@Indexed.name value (as well as the same DirectoryProvider type), like Dvd and
Drink in listing 3.3.

Listing 3.1 An entity is indexed by Hibernate Search when marked @Indexed

Listing 3.2 Overriding an indexed name to refine the targeted Lucene Directory.

Mark the entity as
@Indexed

Index names can
be customized

mailto:@Indexed.name

69Mapping entities

@Entity
@Indexed(name="Item")
public class Dvd {
 ...
}

@Entity
@Indexed(name="Item")
public class Drink {
 ...
}

The same logical name points to the same physical configuration in Hibernate
Search, effectively sharing the index structure.

Entity structures can be more complex than the previous example, especially when
subclasses are involved.

3.2.2 Subclasses

Hibernate Search, just like Hibernate, is fully polymorphic and lets you map hierar-
chies of classes as well as express polymorphic queries. In practice, this means that you

Listing 3.3 Indexed entity sharing the same underlying Lucene Directory

The same index name is
shared by both entities

Should I share the same Lucene directory for all my entities?
Usually this is not necessary.

Sharing the same index will help to optimize queries because Hibernate Search will
have to handle fewer file resources at the same time. This is particularly true when
the amount of indexed data is low. On the other hand, the query is slightly more com-
plex when an index is shared, because Hibernate Search needs to filter by class type.
In addition, when the amount of data starts to grow significantly, splitting the index
into several smaller ones will help Lucene to scale; each write lock is applied to a
smaller portion of the data, which helps to maintain a good level of scalability. By de-
fault, Hibernate Search indexes each entity type in its own index and offers the pos-
sibility of using more indexes for the same entity through what is called index sharding
(see chapter 9).

The gain provided by sharing the directory is usually not significant enough to make
a difference. Maintenance might be a stronger criterion, but you can see the glass
half full or half empty:

■ Having one index per entity helps maintainability and allows incremental
rebuild if something goes wrong on an index file.

■ Having one single index (arguably) reduces complexity for operation people.

Hibernate Search lets you do what you prefer. The defaults provide good performance
most of the time. Make sure you consider ease of development when you make your
choice. Everything normalized in a simple and standard way will save you time. The
authors generally use the Hibernate Search defaults.

70 CHAPTER 3 Mapping simple data structures
can write classes and subclasses in your domain model without worrying about Hiber-
nate Search. Back to our store example, our client forgot to tell us that on top of
DVDs, the website also has to sell food such as popcorn and drinks such as wine. (I
don’t know about popcorn, but chilling out with a glass of decent wine in front of a
good movie is definitely something I’d be willing to pay for.) We’ll refactor our
domain model to cope with this new requirement. The website will see Items that will
be declined in Dvds, Food, and Drinks (see listing 3.4).

@Entity
public abstract class Item {

 @Id @GeneratedValue
 @DocumentId
 private Integer id

 @Field
 private String title;

 ...
}

@Entity
@Indexed
public class Drink extends Item {

 @Field(index=Index.UN_TOKENIZED)
 private boolean alcoholicBeverage;

 ...
}

@Entity
@Indexed
public class Dvd extends Item {

 @Field(index=Index.UN_TOKENIZED)
 private String ean;

 ...
}

Hibernate Search will index not only marked properties of a given class but also all
marked properties of its superclass. In listing 3.4, the Drink entity will be searchable
by the following properties:

■ alcoholicBeverage from Drink
■ id from Item
■ title from Item

Listing 3.4 Mapping a class and its subclass

Superclasses don’t
have to be marked
@Indexed

Superclasses can
contain indexed
properties

Concrete subclasses
are marked @Indexed

71Mapping entities

You might have noticed that the Item entity is not marked as @Indexed. While marking
Item with @Indexed will do no harm, it’s not necessary. You should mark entities with
@Indexed only when:

■ You want to be able to search by this entity.
■ The entity is of a concrete type (not abstract).

In our system, Item is an abstract class and will have no instances of it. If you look back
at figure 3.1, you’ll see that subclasses are denormalized in the Lucene index: All
instances of Drink will be indexed in the org.manning.hsia.dvdstore.model.Drink
index, including the information about its superclass’s properties id and title.

NOTE Denormalization doesn’t prevent you from executing polymorphic que-
ries. As you’ll see later in this book, you can search for all Items whose
title contains valley. Both the DVD In the Valley of Elah and Napa valley
wines will show up even if Item hasn’t been marked with @Indexed.

Hibernate Search doesn’t read metadata annotations from interfaces, but you can, of
course, map the implementation class and its properties.

3.2.3 Mapping the primary key

The data linking an object instance, a database row, and a Lucene Document, besides
the entity type, is the identity property (named primary key in the database). Hibernate
Search requires you to mark the identity property in a given class hierarchy. This prop-
erty will be stored in the index structure and is one of the properties you’ll be able to
query by in a full-text query. Have a look at listing 3.5.

Can I map a view?
In Hibernate Core, the typical way to map a table view is to map a special entity onto
that view. For Hibernate Core, a view is no different from any other regular table. If
you cannot materialize the view in your database, you typically use the @Loader an-
notation to describe the SQL query used to load the entity. In both cases, the entity
is read-only (and typically marked as @Immutable). Any change to the underlying data
requires you to reload the entity.

You can index such view entities by marking them as @Indexed. Unfortunately, Hiber-
nate Search doesn’t know when such an entity changes, because everything happens
in the database, and it cannot keep the index updated for you. Use the manual index-
ing API described in section 5.4 to manually reindex your data efficiently. This is par-
ticularly efficient when the data constituting the view doesn’t change frequently; in
this case, the frequency at which you need to reindex will be reduced.

Note that when using modern JDBC drivers and databases, the difference between a
physical database view and a prepared statement is quite minimal, because both are
prepared in advance. You can simply map your entity on SQL statements for CRUD
(create read update delete) operations without having to use a view.

72 CHAPTER 3 Mapping simple data structures

@Entity
@Indexed
public class Dvd {

 @Id @GeneratedValue
 @DocumentId
 private Integer id;

 ...
}

Marking a property as the identifier property is as simple as annotating it with @Docu-
mentId. You can use this property in your full-text queries, but be aware that this prop-
erty is untokenized and stored in the index. Why is that? Hibernate Search needs to
find a Lucene Document by its exact entity identifier in order to be able to update its
content when the entity instance changes. It also needs to read the identifier value out
of the index to retrieve the object from the persistence context. If you need to query
the tokenized property, consider using the technique described in section 3.3.4.

NOTE PRIMARY KEY AND CLASS HIERARCHY Just like a Hibernate Core entity
hierarchy, an indexed class hierarchy can contain only one primary key
declaration. If you try to use @DocumentId more than once in a class hier-
archy, an exception will be thrown.

Some legacy database models require composite primary keys. At the time when this
book was written, Hibernate Search didn’t support composite identifiers out of the
box. But thanks to the flexible field bridge model, you can work around this limita-
tion. While implementing the actual field bridge is explained in section 4.1.4, we’ll
take a look at the mapping structure now.

@Entity
@Indexed
public class Person {

 @EmbeddedId
 @DocumentId
 @FieldBridge(impl = PersonPKBridge.class)
 private PersonPK id;

 ...
}

@Embeddable
public class PersonPK implements Serializable {

 private String firstName;
 private String lastName;

 ...
}

Listing 3.5 Mark the identifier property as the Lucene Document id

Listing 3.6 Using a composite identifier through a custom FieldBridge

Mark the id property
with @DocumentId

The property is a
composite identifier Mark the property as a

document id

Convert to something
chewable by Lucene

mailto:@Docu-mentId.You
mailto:@Docu-mentId.You
mailto:@Docu-mentId.You

73Mapping entities
The noticeable element is the @FieldBridge annotation. The PersonPKBridge class
referenced by @FieldBridge does the conversion between the composite property
and its Lucene index representation (back and forth). This class must implement
either TwoWayFieldBridge or TwoWayStringBridge. We’ll show a possible implemen-
tation in section 4.1.4.

 Marking a nonidentifier property as a document id is not supported by Hibernate
Search (and probably has little use).

 We’re starting to map the object structure into an index structure, but what is the
index structure, and how does Hibernate Search physically store the entity into the
Lucene index?

3.2.4 Understanding the index structure

Indexing is a complex process, and it sometimes doesn’t do what you’d expect it to
do. This section will show you the Lucene index structure that Hibernate Search uses.
This will help you to dig faster into the index and diagnose what’s going wrong. The
must-have tool in the Lucene world for diving into the index internals is Luke. If you
haven’t read the introduction to Luke from section 2.6, we strongly encourage you to
do so now.

 Let’s take the mapping we used in section 3.2.2. We’ve mapped two entities, Dvd
and Drink, both inheriting from the Item superclass. Luke must read the Lucene
directory from a filesystem; unfortunately, it’s not possible to configure Luke to read
in-memory directories. Our project will then use the default FSDirectoryProvider, as
shown in listing 3.7. Don’t forget to set the indexBase property.

<hibernate-configuration>
 <session-factory>

 <property name="hibernate.search.default.directory_provider">
 org.hibernate.search.store.FSDirectoryProvider
 </property>
 <property name="hibernate.search.default.indexBase">
 ./build/indexes
 </property>
 ...

 <mapping class="com.manning.hsia.dvdstore.model.Item"/>
 <mapping class="com.manning.hsia.dvdstore.model.Dvd"/>
 <mapping class="com.manning.hsia.dvdstore.model.Drink"/>
 </session-factory>
</hibernate-configuration>

If you look into the ./build/indexes directory (which should be relative to the direc-
tory where your Java program started), you’ll see two subdirectories:

■ com.manning.hsia.dvdstore.model.Drink
■ com.manning.hsia.dvdstore.model.Dvd

Listing 3.7 Configuring Hibernate Search to store Lucene indexes on a filesystem

Define the
directory
provider

Define the root
directory

74 CHAPTER 3 Mapping simple data structures
TIP If you deploy on JBoss AS, you can use the following indexBase value:
../server/[configuration]/data/indexes. Indexes will be kept next
to the hypersonic database content.

Unless you override the index name in @Indexed, Hibernate Search creates one index
directory per @Indexed entity, each index directory name corresponding to the fully
qualified class name of the entity class. Item doesn’t have a Lucene index on its own
because the entity isn’t marked as @Indexed. Using Luke on the Drink index and look-
ing at the first document, we see the screen shown in figure 3.2.

 Each row represents a Lucene field in the document. Since Drink inherits Item, we
expect to see title, description (which are denormalized from Item), and alco-
holicBeverage. Note that their values are not stored in the index; the next section
will explain why. id is the identifier property found in Item. Luke confirms to us the
indexing strategy required for identifier properties: They are stored, indexed, but not
tokenized. All these properties were expected.

 _hibernate_class was, however, not expected: There is no _hibernate_class in
Drink nor in any of its superclasses. In each document (which represents an entity
instance), Hibernate Search stores the entity type (in our case com.man-

ning.hsia.dvdstore.model.Drink).
 Thanks to the identifier property and the entity type in each document, Hibernate

Search can:

■ Remove the indexed data for a specific entity instance
■ Share the same index directory for multiple entity types
■ Load an entity from the persistence context from a Lucene query result

In very specific situations, it’s quite appropriate to use the _hibernate_class property
in queries, especially to go beyond what vanilla polymorphism can do. You can refer-
ence this special field name in your code by using DocumentBuilder.CLASS_FIELDNAME.

 You know how to map an entity and that @Indexed and @DocumentId are the only
two mandatory elements. Hibernate Search lets us play nicely with polymorphic
domain models and deal with the underlying Lucene index structure.

Figure 3.2 First document in the Drink index showing the id property and the special
_hibernate_class property

75Mapping properties
 All this would be of little use without the ability to index properties. It would be
like having a car with no wheel, no seat, no gas pedal, and no cup holder (maybe not
that last one): pretty useless. This is the subject of the next section. As a matter of fact,
the last few paragraphs already dangerously flirted with the idea of property mapping.

3.3 Mapping properties
Some properties in your domain model deserve
to be indexed and further searched, but not all
of them. Mapping defines which property is
selected at a fine-grained level. Mapping prop-
erties as indexed is like highlighting parts of a
text with a marker: You select which informa-
tion is relevant for future search requests (see
figure 3.3).

 Instead of using a marker, you use annota-
tions to mark the properties that need to be
indexed. Unlike a regular highlighter, Hiber-
nate Search can guess the type of the annotated
property and find the right object-to-string con-
verter. Just as using different highlight colors
lets you define different contexts, Hibernate
Search annotations let you refine the mapping
strategy. Let’s explore the various possibilities.

3.3.1 Marking a property as indexed

Hibernate Search can indifferently read the property values from the attribute or
from the getter method. When annotations are placed on the attribute, the attribute
access is used. When annotations are placed on the getter method, getter access is
used. Nothing fancy here! In this book, we refer to properties for either attributes or
getters (Java should have had first-class property support from the ground up, but
that’s another story). Attributes and getters can be of any visibility (from private to
public). Choosing one strategy over another is a matter of taste. While the authors
tend to prefer the getter access strategy because it properly mimics a true property
support, it’s more important to keep one consistent access strategy across the board
and, if possible, aligned with the Hibernate Core access strategy. Let’s explore that in
listing 3.8.

 To mark a property as indexed, annotate it with @Field.

@Entity
@Indexed
public class Item {

 @Id @GeneratedValue

Listing 3.8 @Field marks a property as indexed.

Figure 3.3 Mapping properties is like
highlighting the important information.

76 CHAPTER 3 Mapping simple data structures
 @DocumentId
 private Integer id;

 @Field
 private String title;

 @Field
 private String description;

 ...

 @Field
 public String getEan() {
 return this.ean;
 }
}

In listing 3.8, as you can see, both attribute and getter access are supported. We marked
the title and description fields as well as the ean getter. Each property will be added
to the Lucene document representing the Item instance. The field name will, by
default, match the property name. You can override the default Lucene field name by
using @Field.name. This isn’t recommended because the one-to-one matching
between the property name and the Lucene field makes writing queries very natural.

 It can be handy, however, if you’re sharing the index with third-party applications
or if you need to map the same property multiple times (see section 3.3.4).

 While we know how to mark a property as indexed, how does the actual index
operation happen? How is the object data converted into a string structure suitable
for Lucene? Bridges are responsible for the conversion between the two worlds.

3.3.2 Built-in bridges

A field bridge is the Hibernate Search infrastructure responsible for bridging the
object world to the index world. Each property value will be passed to a field bridge,
which will add it into the Lucene Document representing the entity instance. Bridges
convert an object type into a string. Some field bridges also know how to convert the
string back into the original object structure (which, you’ll see later, is useful for iden-
tity properties and projected fields).

 The field bridge infrastructure is one of the pillars of Hibernate Search’s flexibility,
and you can write you own. The set of built-in bridges will be sufficient for most of
your indexed properties. Hibernate Search tries to match automatically a built-in
bridge from the return type of a property. These rules are described in table 3.1.

 This list might evolve over time, so we encourage you to check the Hibernate
Search reference documentation for the most up-to-date information. You can find
the reference documentation in each Hibernate Search distribution. Most of the
time, the result is straightforward: When Hibernate Search recognizes a supported
property type, it uses the appropriate field bridge. We need to mention a few points:

■ Comparison in Lucene between two property values
■ Dates
■ The special case of null

Title property is indexed
in the title field

Annotation placed
on field: field
access is used

Annotation placed on
getter: getter access
is used

mailto:@Field.name

77Mapping properties

In Lucene everything is a string. This is particularly true for comparisons. Lucene
compares data on two occasions:

■ When a Lucene query sorts results by field value rather than by relevance
■ When a ranged query is expressed (for example, return products sold between

10 and 20 €)

Because everything is a string in Lucene, comparisons can be a bit surprising at times.
For example, the number 2 is higher than 12. This is why numbers are marked as not
comparable in table 3.1. We’ll find a way to bring back sanity to number comparison
in the next chapter when we talk about custom bridges. When using comparisons,
always be aware of how the bridge stores data in the index, and remember that it will
end up being a string comparison.

 Dates are the second topic worth a special mention. Unfortunately, the JDK doesn’t
have great support for date and time. java.util.Date is used to represent everything:

■ Date (as in day)
■ Time (as in hour and minute)
■ Exact period of time (date and time)

Table 3.1 Built-in bridges and their associated mapping

Java type Built-in bridge Description

String StringBridge no-op

short/Short ShortBridge Uses toString(), not comparable

int/Integer IntegerBridge Uses toString(), not comparable

long/Long LongBridge Uses toString(), not comparable

float/Float FloatBridge Uses toString(), not comparable

double/Double DoubleBridge Uses toString(), not comparable

BigDecimal BigDecimalBridge Uses toString(), not comparable

BigInteger BigIntegerBridge Uses toString(), not comparable

boolean/Boolean BooleanBridge String value: “true”/“false”

Class ClassBridge Uses class.getName()

Enum EnumBridge Uses enum.name()

URL UrlBridge Uses toString()

URI UriBridge Uses toString()

Date DateBridge The string representation depends on
@DateBridge’s resolution parameter.
Converting Date into string and back is not guar-
anteed to be idempotent.

78 CHAPTER 3 Mapping simple data structures
The Date object carries all the precision all the time, and only the application knows
(sometimes) the context in which Date is used and the expected precision. In the
Lucene index, it’s not always necessary to store the exact precision all the time. This is
particularly true for ranged queries. Lucene’s internal implementation of RangeQuery
replaces a range restriction by a query of all terms in the index matching this range
(for a given field). For example, if we look for dates between 2004 and 2005, and if
five elements match this range, the range query will be replaced by a Boolean query
matching these five items. The number of matching elements can be quite large if the
precision is high, slowing down the query. If your date has a monthly precision, you
cannot have more than 12 matching terms for a range encompassing one year; a pre-
cision by the minute raises potential matching terms up to 525,600! This problem is
also described in section 7.3.4.

 Hibernate Search lets you pick the date precision you wish from year to millisec-
ond. The data indexed in Lucene will be up to the precision. When mapping a Date
property, you must annotate it with the @DateBridge annotation, as shown in
listing 3.9.

@DateBridge(resolution = Resolution.DAY)
private Date birthdate;

@DateBridge(resolution = Resolution.MINUTE)
private Date flightArrival;

Dates are stored in the index in absolute format GMT. Depending on the resolution,
the format goes from yyyy for year precision up to yyyyMMddHHmmssSSS for millisec-
ond precision. As you can see, comparison between dates is possible with this scheme.

 Null is an interesting topic in the persistence field and, to this day, is still debated
by experts. Remember we described the meaning of null as either “I don’t know the
value” or “It is not applicable in this case.” For this reason, Hibernate Search does not
index null values (see the note “What about null?” in section 3.1.2 for more details).
While the authors do not recommend doing so, it’s possible to write custom field
bridges that store a special queriable marker in lieu of null. At this point you should
consider using the same marker in your database as well and avoid the mismatch
between your database and the index.

 Now that we’ve reassured you about Hibernate Search taking care of object conver-
sion and have warned you about some of the gotchas, we’ll focus on how Lucene
indexes this data.

3.3.3 Choosing an indexing strategy

Lucene offers flexibility in how the data is stored and indexed. Depending on the
kind of query you want to apply to a given property and on the type of data, one
indexing strategy will better fit your needs.

Listing 3.9 Mapping a Date property

Precision stored in
the index: day

Precision stored in
the index: minute

79Mapping properties
TO TOKENIZE OR NOT TO TOKENIZE

Most of the problems full-text searching aims to address revolve around words:

■ Searching for matching words within a sentence
■ Finding words matching the same root (matched and matching, for example)
■ Finding words having a similar meaning (for example, car and vehicle)

To solve these problems, Lucene must identify each word in a document to process
it later on. This process is called tokenizing. A property that goes through this pro-
cess is said to be tokenized, and each individual word can be queried. This (TOKEN-
IZED) is the default operation applied when @Field is used. In listing 3.10,
description is tokenized.

@Entity
@Indexed
public class Item {
 ...

 @Field
 private String description;
}

In some cases the data should be indexed unaltered. Any kind of unique identifier
property (and first among them the identifier property matching the database’s pri-
mary key) should not be tokenized but rather indexed as is. Queries will then be able
to target the exact value. Why should unique identifiers remain intact? You certainly
don’t want identifiers containing spaces, numbers, and case-sensitive data to be scram-
bled; they would no longer be searchable by their exact value. Dates and numbers
might also be a type of data that shouldn’t be tokenized. The tokenization process is
governed by analyzers, some of which ignore numbers altogether (see section 3.4.1
for more details).

 Properties that will be used to sort query results (to sort by property rather than by
relevance) must not be tokenized either but must be indexed. You then need to use
the UN_TOKENIZED indexing strategy on such properties.

 To index a property without using the tokenized process, use the @Field.index
property, as shown in listing 3.11.

@Entity
@Indexed
public class Dvd {
 ...

 @Field(index=Index.UN_TOKENIZED)
 private String ean;
}

Listing 3.10 Indexing a property using the tokenized strategy

Listing 3.11 Indexing a property and avoiding the tokenization process

A description is
tokenized

A ean is not tokenized

mailto:@Field.index

80 CHAPTER 3 Mapping simple data structures
The Index enum contains two more values: NO and NO_NORMS.
 NO can be used to ask Lucene not to index the property. This is useful in case you

want to store the value in the Lucene index to allow property projection (see section
11.4) but have no need to search by this particular property. Not indexing the data
will save both indexing time and space in the index.

 NO_NORMS is an advanced feature that you shouldn’t use without extra knowledge of
Lucene. The NO_NORMS option will avoid the tokenization process and avoid storing
useful data used to compute the score (the relevance) of a matching document in a
query result. While this saves some memory space, it also reduces the feature set.

 Indexing is one thing, but you might sometimes need to store the original value in
the index for the sake of retrieving it. Hibernate Search lets you do just that.
STORING THE DATA IN THE INDEX

In Lucene, you can index data without storing it in the index. In most cases, the data
is retrieved elsewhere, and duplicating the data is unnecessary. By default, Hibernate
Search doesn’t store the property value in the Lucene index. This is unnecessary
because the entities are hydrated from the persistence context (the Session or the
EntityManager). On some occasions, however, it is significantly faster to retrieve the
information from the Lucene index itself. Queries retrieving the data from the
Lucene index are called projections (see chapter 11). Every projected property must be
stored in the Lucene index. Storing the value in the index can also be useful if third-
party applications access the same Lucene index. To enable data storing, use
@Field.store, as in listing 3.12.

@Entity
@Indexed
public class Item {
 ...

 @Field(store=Store.YES)
 private String title;
}

Don’t store every single property, though. Doing so takes up space in the Lucene
index and consumes more input/output, and the field bridges used must obey the
TwoWayFieldBridge or TwoWayStringBridge contract (see section 4.1 for more infor-
mation).

 You can decide to store the value in a compressed manner. This saves some space
in the Lucene index at the expense of more CPU consumption at reading and writing
time. To store a property in a compressed manner, use the Store.COMPRESS value. In
listing 3.13, the title is stored as compressed in the index.

Listing 3.12 Storing a property value in the index, enabling projection queries

Title value is stored in the index

mailto:@Field.store

81Mapping properties

@Entity
@Indexed
public class Item {
 ...

 @Field(store=Store.COMPRESS)
 private String title;
}

You can also store statistical information about the indexed data.
EXTRACTING STATISTICAL INFORMATION: TERMVECTORS

By default, Lucene stores the necessary information it needs to answer your queries.
But your application can look at statistical information on a given field in a given doc-
ument and extract a few interesting things, for example:

■ List of terms (words) used
■ Number of occurrences for each term
■ Positions in the field (roughly the number of words before a given term)
■ Offset in the field (start and end): the position in the string where the term

starts and stops

This kind of information can be useful when:

■ Doing “more like this” queries
■ Highlighting the matching sections

NOTE The term vector feature is available only in Hibernate Search 3.1 and
above.

This statistical data isn’t stored by default in the Lucene index because it takes space
and time to compute. But you can enable it on a per-field basis. Use @Field.termVec-
tor to choose which data to store:

■ TermVector.NO (default)—Does not store statistical information
■ TermVector.YES—Stores terms and their number of occurrences
■ TermVector.WITH_OFFSETS—Stores terms, their number of occurrences, and

the offset information
■ TermVector.WITH_POSITIONS—Stores terms, their number of occurrences, and

the position information
■ TermVector.WITH_POSITION_OFFSETS—Stores terms, their number of occur-

rences, and both position and offset information

Listing 3.14 gives a usage example.

Listing 3.13 Storing a property value as compressed in the Lucene index

A title value is stored
compressed in the index

mailto:@Field.termVec-torto
mailto:@Field.termVec-torto
mailto:@Field.termVec-torto

82 CHAPTER 3 Mapping simple data structures

@Entity
@Indexed
public class Item {
 ...

 @Field(termVector=TermVector.YES)
 private String title;
}

Section 12.4.3 gives more information on how to extract and use these statistics. You
know a lot about indexing properties now, but we haven’t yet shown you how to index
the same property multiple times.

3.3.4 Indexing the same property multiple times

Indexing the same property multiple times may sound like a waste of time and index
space, but it’s very handy in specific situations. You’ve seen that properties used for
sorting at query time must not be tokenized because doing so significantly diminishes
how you can query given properties. In particular you cannot benefit from the ability
to search by word in such properties.

 You can work around this limitation by indexing the property multiple times (see
listing 3.15).

@Entity
@Indexed
public class Item {
 ...
 @Fields({
 @Field(index=Index.TOKENIZED),
 @Field(name="title_sort", index=Index.UN_TOKENIZED)
 })
 private String title;

Note that the additional properties must be explicitly named because two fields
shouldn’t share the same name. Queries will then be able to refer to the additional
indexed data by their field name (see title_sort in Listing 3.15).

 While mapping entities is like building the skeleton of a body, mapping properties
is like adding all the necessary pieces to bring life to it. Mapping properties is directly
related to how you’ll decide to search your domain model.

 Hibernate Search tries to do as much as possible for you through the built-in field
bridge infrastructure and makes it as easy as possible thanks to sensible defaults. It
also opens the doors for customization, especially as to which indexing strategy should
be applied. You’ll see in the next chapter how to bring this flexibility to the next level,
but before that, let’s talk about important concepts in the mapping process and how
they’ll affect you.

Listing 3.14 Storing statistical information for a field

Listing 3.15 Indexing the same property with different indexing strategies

Store occurrence
statistics

Same property
indexed multiple
times

Use a different
field name

83Refining the mapping
3.4 Refining the mapping
While we covered specific mappings for entities and properties, some mapping
descriptors are applicable at both levels. An analyzer takes a text and breaks it into
individual words. This isn’t as easy as it sounds, and a lot of customized chunk opera-
tions can be applied. We’ll show you how to choose an analyzer. The second mapping
we’ll discuss in this section is defining a boost factor to give more weight to one field
than another.

3.4.1 Analyzers

Analyzing is the process of taking a text or a sentence and splitting it into several
words, which are then indexed by Lucene. As you have seen in section 3.3.3, this ana-
lyzing process is triggered on properties marked as TOKENIZED. Analyzers will be
described in detail in section 5.2, but we’ll show you how to configure an analyzer now
because it’s part of the mapping process.

 In many applications, one global analyzer is good enough. You can define the ana-
lyzer you want to use by default through a configuration property, as shown here:

hibernate.search.analyzer=org.apache.lucene.analysis.
➥ standard.StandardAnalyzer

or
hibernate.search.analyzer=applicationanalyzer

hibernate.search.analyzer takes either the fully qualified class name of the ana-
lyzer class or the name of an analyzer definition. As you will see in chapter 5, an ana-
lyzer definition lets you declare a complex analyzer by name. The StandardAnalyzer
class, which should be good for most basic texts in English, is the default value.

 It’s possible to define different analyzers for different entities. If you need an even
finer-grained level, you can define a specific analyzer for a given field. The most local
analyzer has priority when choosing the analyzer to use as defined in this list of
decreasing analyzer priority:

1 analyzer defined on @Field
2 analyzer defined on a property (attribute or getter)
3 analyzer defined on an entity
4 global analyzer

Listing 3.16 demonstrates these rules.

@Entity
@Indexed
@Analyzer(impl=StandardAnalyzer.class)
@AnalyzerDef(name="synonyms", ...)
public class Item {
 ...
 @Field
 private String title;

Listing 3.16 Defining analyzers at different levels of the mapping

Default analyzer
for this class

"synonyms"
analyzer
definition

84 CHAPTER 3 Mapping simple data structures
 @Field
 @Analyzer(definition="synonyms")
 private String description;

 @Fields({
 @Field(name="brand", index=Index.TOKENIZED,
 analyzer=@Analyzer(impl=PhoneticAnalyzer.class)),
 @Field(name="brand_sort", index=Index.UN_TOKENIZED)
 })
 private String brand;

In listing 3.16, all fields (for example, title) of Item use StandardAnalyzer except:

■ The description field, which uses the synonyms analyzer
■ The brand field, which uses a phonetic analyzer

Before you get too excited, let’s remember that mixing analyzers should be left to spe-
cific cases. In particular, analyzers used to build the query should be compatible with
analyzers used to index the queried data; mixing analyzers makes query building more
complex. Chapter 7 and specifically section 7.2.3 go into the details of this problem.

 The next section describes boost factors. Briefly, boost factors alter the influence a
given field has on the relevance of a document. Splitting the different analyzer strate-
gies into two different fields allows us to decide if we want to use the phonetic
approach to build the query. For example, we might want to try exact matches before
backing up to a phonetic approach if the result list is desperately empty.

Use the analyzer
definition

Field-level
analyzer

Opening possibilities with multiple-field mapping, analyzers,
and boost factors
Mixing the ability to index the same property into multiple fields with the use of ana-
lyzers provides interesting possibilities. As you’ll see later in this book, using analyz-
ers is the key to such features as synonym matching, phonetic approximation, and
so on. Using a dedicated field for the approximation strategy will allow the query writ-
er to precisely decide whether or not she wants to benefit from these features and
which boost (or weight) she wants to provide to these approaches. The following con-
crete example demonstrates how a property can be indexed both regularly and by us-
ing a phonetic analyzer.

@Entity
@Indexed
public class Item {

 @Fields({
 @Field(name="title"),
 @Field(name="title_phonetic",
 analyzer=@Analyzer(impl=PhoneticAnalyzer.class),
 boost=@Boost(0.5f)
 })
 public title;

 ...
}

Use the
standard
analyzer

Lower field
influence Use the

phonetic
analyzer

85Refining the mapping
 If you don’t understand all the fuss about analyzers, don’t worry; we’ll go back to
them in detail in 5.2. This chapter showed you how to use an analyzer on a field, on a
property, on a class, or globally.

3.4.2 Boost factors

Not all properties and not all entities are equal in the search process. Some have a
stronger influence than others. Let’s imagine in our store application that a user is
looking for the Band of Brothers DVD. Finding these words in the title field should
push the matching document to a higher priority than finding the same words in the
description property.

 By default Lucene associates a boost factor of 1.0 to entities and properties. You
can override the boost factor to reflect the importance of title over description
(see listing 3.17).

@Entity
@Indexed
public abstract class Item {
 ...
 @Field @Boost(2.0f)
 private String title;

 @Field
 @Analyzer(impl=SynonymsAnalyzer.class)
 private String description;
}

The boost factor is a float that can take any value, including lower than 1 if you wish to
diminish the impact of a field rather than increase it. The exact influence of the boost
factor in the document score is explained in chapter 12.

Listing 3.17 Using the boost factor to prioritize some properties over others

Boost
title field

Can I use negative boost?
As far as the authors know, it’s possible to use a negative boost, but you might be
surprised by its effects. A negative boost means that if a query searches a word con-
tained in a given negatively boosted field, the global document score (or popularity)
will diminish if this word is found. Use cases for it do not pop up naturally. You could
imagine an entity that stores words in a special property; each of these words not
associated with the document should reduce your chances to retrieve the document.
This might be used as a way to compensate for the presence of some words that are
nonsignificant for the document.

Generally speaking, you shouldn’t use negative boosts. If you do, do so only if you
understand precisely what you’re doing (especially read chapter 12 to understand
scoring and section 13.1.2 for an example). If you’re looking to exclude words from
a query, explicitly exclude them by using - or its programmatic equivalent Boolean-
Clause.Occur.MUST_NOT.

86 CHAPTER 3 Mapping simple data structures
You can also boost some entities over others. In our DVD store example, it probably
makes sense to return matching DVDs slightly higher in our search results than food
items. You can achieve that by boosting the entity, as shown in listing 3.18.

@Entity
@Indexed
public class DVD {
 ...
}

@Entity
@Indexed
@Boost(.75f)
public class Drink {
 ...
}

NOTE Rather than promoting or demoting an entity against another, an alter-
native is to expose the choice to the user by returning the results in dif-
ferent lists. In a DVD store, the main list could return matching DVDs but
also propose a small side link to the best-matching actors.

Boost factors are combined; more precisely, they are multiplied by each other. If an
entity is boosted by 1.4, and one of its property is boosted 1.2, the total boost for the
field will be 1.4 * 1.2. You can boost a specific @Field by using @Field(boost=
@Boost(1.2f)). This is particularly useful when a property is indexed multiple times.

 While the authors agree that not all properties and entities are made equal, they
also think that defining the priority at indexing time is not the best approach. For
example:

■ What happens, if after some live testing, you realize that the boost factor should
be 1.5 rather than 1.3?

■ What happens if in one use case the optimal boost factor is different than in
another use case?

To solve the first problem, you’ll have to reindex all your data; the boost factor is
defined and stored at indexing time. To solve the second problem, you’ll have to give
your preference to one use case over another.

 Fortunately, Lucene offers tools to work around these problems. You can define
boost factors in the query rather than in the index. This essentially delays the boost
factor decision until you execute the query. See Section 7.1.6 for more information.
While it can make the query writing a bit more tedious, a boost time query is the pre-
ferred method of the authors because it gives a lot of flexibility.

Listing 3.18 Boosting an entity (among others)

Reduce the score
of all Drinks

mailto:@Boost(.75f

87Summary
3.5 Summary
That’s it! You now can officially claim that you know how to map all the basic models
in Hibernate Search. This was a lot of new information in one chapter, but don’t
worry. In practice, most of the default values are used, and defining the mapping
information comes quite naturally. You should spend most of your time thinking
about the data you wish to search by and about the type of query you want to be able
to execute. From this knowledge, the mapping description comes naturally.

 An attentive reader might have seen that we left some questions about mapping sit-
uations unanswered. The next chapter will describe more advanced mapping tech-
niques, some of them at the heart of Hibernate Search’s flexibility. If you’re still a bit
uncomfortable with mappings, or if you think you’ve had enough mapping informa-
tion for the day, you can skip the next chapter for now and jump to chapter 5 or even
chapter 6. After reading chapters 6 and 7 on how to write a query, you’ll understand
better the reasons behind the mapping metadata.

Mapping more advanced
data structures
Although Hibernate Search comes with built-in bridges for most useful Java types,
they won’t cover all your needs. It’s not uncommon in an application to need to
define specific types. Even if the type you’re wanting to index is supported, its
string representation generated by Hibernate Search and indexed by Lucene
might not be appropriate for the kind of full-text query you’re looking for. Gener-
ally speaking, what happens when you need to map the unexpected? Hibernate
Search has the notion of a bridge, which converts the object structure into the
Lucene structure. You can extend the supporting types and their behavior by writ-
ing your own custom bridge implementation. The first part of this chapter covers
this functionality.

This chapter covers
■ Custom bridges
■ Mapping relationships
88

89Mapping the unexpected: custom bridges
NOTE If you’re still uncomfortable with the notion of mapping, read chapter 3
again or jump to chapter 5. You can easily come back to this chapter later
in your journey. Thanks to chapter 3, you know how to map most of the
domain model. For 80 percent of your mapping and even for many appli-
cations, this is all you’ll need to know. We’ll cover more advanced needs
in this chapter; the extra 20 percent of mappings require either addi-
tional features or more flexibility.

Chapter 3 showed how Hibernate Search maps an entity, its superclasses, and its prop-
erties. But it made no mention of another structural mapping problem: relationships.
Both in the database model and in the object model, it’s possible to create associa-
tions between two entities. Databases traditionally employ four types of associations:

■ One to one, represented by a type association in Java
■ Many to one, represented by a type association in Java
■ One to many, represented by a collection or an array in Java
■ Many to many, represented by a collection or an array in Java

Lucene provides no built-in association between documents. While this limitation
doesn’t seem too problematic at first glance, it means that we cannot express corre-
lated queries. Correlated queries are queries involving the values of associated object
properties. Back to the DVD store example we started in chapter 2, we cannot express
the idea of returning all the DVDs whose title contains mountain and that feature the
artist ledger. This is close to a deal breaker. Fortunately, Hibernate Search offers a way
to work around this limitation, as you’ll see in the second part of this chapter. But let’s
come back to our first problem, mapping unexpected structures.

4.1 Mapping the unexpected: custom bridges
Bridges fulfill the following needs in the Hibernate Search architecture:

■ They convert an object instance into a Lucene consumable representation
(commonly a string) and add it to a Lucene Document.

■ They read information from the Lucene Document and build back the object
representation.

The first operation is mandatory for all bridges and is used every time an entity is cre-
ated or changed and when its properties have to be indexed. The second operation is
optional and is used in two situations, when the bridge is used on:

■ An identifier property
■ A property stored in the index that aims to be projected in a query

An identifier property needs to be read from the Lucene index and rehydrated. This
means Hibernate Search needs to be able to build the object representation of the
identifier out of the Lucene data. From this rehydrated value, Hibernate Search will
be able to retrieve the entity from the persistence context by its id.

90 CHAPTER 4 Mapping more advanced data structures
 Some queries, called projection queries, return the property values straight from the
index rather than from the Hibernate persistence context. To project a property, its
value must be stored in the index, and its bridge must be capable of reconstructing
the object representation. Projection queries are described in section 6.5.

 Bridges that support the conversion of both the object to Lucene and from Lucene
to the object are called two-way bridges.

While listing all the use cases where bridges are useful is quite frankly impossible,
some examples will help you get a better grasp on bridges and unleash your imagina-
tion. You can:

■ Index the text in a PDF represented by an array of bytes; the bridge needs to
extract the text from the PDF (see section 13.2.1).

■ Index a Microsoft Word document located at a given URL; the bridge needs to
access the URL, read the Word document, and extract the text (see
section 13.2.2).

■ Index the year, month, and day of a Date object in separate fields
■ Index a Map with each entry in a specific Lucene field.
■ Combine several properties of an entity and index; the combination results in a

single Lucene document field.
■ Index numbers in a way to make them comparable; using a padding strategy

makes the numbers comparable alphabetically (the only ordering strategy that
Lucene understands).

Depending on the bridge complexity and capability, Hibernate Search offers four
interfaces that can be implemented. Why so many? The number of interfaces could
have been reduced to two, but they would have been too complex for simple cases.
Hibernate Search takes away most of the complexity in the simple cases and lets you
implement a much simpler interface. If you need extra flexibility, you’ll have to pay
the price of implementing a more complex interface. But before walking through
these scenarios, let’s discover how to declare the use of a custom field bridge.

Why not all bridges are two-way bridges
All built-in bridges provided by Hibernate Search are two-way bridges (see
table 3.1), but bridges degrading (or losing) information in the process of converting
the object instance to a string representation are not uncommon. Because informa-
tion is lost, building back the object representation is either approximative or sim-
ply not possible.

A bridge taking a Date object and indexing its year is a typical example. A bridge read-
ing a PDF (represented by an array of bytes) and indexing the content also loses in-
formation; all the text structure, style, and metadata are gone.

91Mapping the unexpected: custom bridges
4.1.1 Using a custom bridge

Like any other mapping declaration in Hibernate Search, annotations are the way to
use a custom bridge.

 The @FieldBridge annotation is placed on a property (field or getter) that needs
to be processed by a custom bridge (see listing 4.1). Optional parameters can be
passed to the bridge implementation.

@Entity
@Indexed
public class Item {
 @Field
 @FieldBridge(
 impl=PaddedRoundedPriceBridge.class,
 params= { @Parameter(name="pad", value="3"),
 @Parameter(name="round", value="5") }
)
 private double price;
...
}

When @FieldBridge is present, Hibernate Search uses the explicit bridge rather than
relying on the built-in bridge-type inference system. @FieldBridge has an impl param-
eter that points to the bridge implementation class. You can optionally pass parame-
ters to the bridge implementation. This is quite handy for helping to keep bridge
implementations more generic and allowing different configurations for different
properties. We’ll cover parameters in section 4.1.3.

 In listing 4.1, the bridge indexes a number by padding and rounding its value.
The application developer can adjust padding and rounding thanks to the bridge
parameters.

 The @FieldBridge annotation can be added on the identifier property as well
(marked by @DocumentId). In this case, the custom field bridge converts the identifier
value into a Lucene structure and is able later on to extract the identifier value from
the Lucene structure. Identifier values require a two-way bridge.

 If you map the same property multiple times, as shown in section 3.3.4, you can
still use a custom field bridge. As shown in listing 4.2, the @Field.bridge parameter
takes a custom bridge description annotation: @FieldBridge.

@Entity
@Indexed
public class Item {
 @Fields({
 @Field(
 name="price",
 bridge=@FieldBridge(impl=PaddedRoundedPriceFieldBridge.class),

Listing 4.1 @FieldBridge declares the use of a custom bridge

Listing 4.2 @FieldBridge can be used in properties indexed multiple times

Property marked to
use a bridge Declare the bridge

implementation

Optionally provide
parameters

Set @FieldBridge
in @Field

mailto:@Field.bridge

92 CHAPTER 4 Mapping more advanced data structures
 @Field(...) })
 private double price;
 ...
}

So far, we’ve seen @FieldBridge defining custom bridges on a property or an @Field.
But it’s sometimes useful to work at the entity level rather than on a given property.
Here are a few use cases:

■ Several properties of an entity need to be combined and the result indexed.
■ Some entity metadata deserves to be indexed in the entity Document, but this

metadata is not stored in the entity itself.
■ Generally speaking, the Lucene Document that contains the index information

of an entity needs to index additional information, and this information is out
of the scope of the Entity object.

To solve this class of problems, Hibernate Search supports the notion of a class-level
bridge. A class-level bridge is like any other Hibernate Search bridge we’ve seen so far.
The only difference is that the entity instance is passed to the bridge in lieu of a prop-
erty value. To declare a class bridge, place an @ClassBridge annotation on the class,
as shown in listing 4.3.

@Entity
@Indexed
@ClassBridge(
 name="promotion",
 index=Index.UN_TOKENIZED,
 impl=ItemPromotionBridge.class)
public class Item {
 ...
}

A class bridge implements the same interface a property bridge does. A class bridge
declaration is very similar to an @Field declaration except that the class bridge imple-
mentation is mandatory because it cannot be inferred from the property type. In par-
ticular, a class bridge shares the following @Field properties:

■ name—The Lucene field name. In a class bridge, this name is recommended
but might not be followed by the class bridge implementation.

■ store—The storing strategy used.
■ analyzer—The analyzer used.
■ index—The indexing strategy used.
■ termVector—The term vector strategy used.
■ boost—The index time boost factor used.

An @ClassBridge declaration also needs to provide the impl attribute (the class
bridge implementation) and optionally provide parameters to the class bridge imple-
mentation (by using the params attribute).

Listing 4.3 Use @ClassBridge to add class-level bridges

Mark the use of a
class bridge Recommended

namespace
Class bridges have
properties similar
to @Field

Class bridge
implementation
used

93Mapping the unexpected: custom bridges
 In listing 4.3, the class bridge adds a promotion field to the Lucene document.
The promotion information could, for example, be provided by an external service
implementation called by ItemPromotionBridge.

 More than one class-level bridge can be declared on a given entity. Use @Class-
Bridges for that purpose.

 Since you just learned how to declare property and class bridges, the next step is to
see how to implement them. Depending on the complexity and the flexibility you
need in your bridge, several solutions are available. The next two sections are dedi-
cated to this subject.

4.1.2 Writing simple custom bridges

Often a bridge is simply a conversion routine from an object representation to a string
representation. You might also have to implement the routine to convert the string
representation back to the object if the bridge is used on an identifier property or on
a property meant to be projected. Let’s first discover how to write the simplest bridge:
the conversion routine from an object to a string.
ONE-WAY SIMPLE CUSTOM BRIDGES

Hibernate Search offers a simple bridge interface to satisfy such cases: org.hiber-
nate.search.bridge.StringBridge.

 Let’s implement the bridge used in listing 4.1. Listing 4.4 shows both the declara-
tion and the implementation of the field bridge. The bridge implementation is a
StringBridge that rounds and pads doubles.

@Entity
@Indexed
public class Item {
 @Field
 @FieldBridge(
 impl=PaddedRoundedPriceBridge.class
)
 private double price;

 ...
}

/**
 * Round a price by range of 5, going to the upper boundaries
 * pad the result with up to 3 non-significant 0
 * Accept double and Double
 */
public class PaddedRoundedPriceBridge implements StringBridge {
 public static int PAD = 3;
 public static double ROUND = 5d;

 public String objectToString(Object value) {

 if (value == null) return null;

Listing 4.4 Declare the use of a bridge and implement it

Declare bridge
implementation

B

Implement
StringBridge

Convert property
value into String

C

D
Null strings are
not indexed

94 CHAPTER 4 Mapping more advanced data structures
 if (value instanceof Double) {
 long price = round((Double) value);
 return pad(price);
 }
 else {
 throw new IllegalArgumentException(
 PaddedRoundedPriceBridge.class
 + " used on a non double type: "
 ➥+ value.getClass());
 }

 }

 private long round(double price) {
 double rounded = Math.floor(price / ROUND) * ROUND;
 if (rounded != price) rounded+= ROUND; //we round up
 return (long) rounded;
 }

 private String pad(long price) {
 String rawLong = Long.toString(price);
 if (rawLong.length() > PAD)
 throw new IllegalArgumentException(
 ➥"Try to pad on a number too big");
 StringBuilder paddedLong = new StringBuilder();
 for (int padIndex = rawLong.length() ; padIndex
 ➥< PAD ; padIndex++) {
 paddedLong.append('0');
 }
 return paddedLong.append(rawLong).toString();
 }
}

B Use the PaddedRoundedPriceBridge to index the price property. C A simple one-
way bridge must implement the method objectToString. The value passed is the
property value, the price in this example. D Null objects should generally return a
null string; the null element is not indexed. E Unexpected inputs should raise a run-
time exception. F Padding is an important technique in Lucene to enable a ranged
query and sorting on numbers.

 The main method to pay attention to is objectToString. This method passes the
property value (or the entity instance if the bridge is a class bridge) and expects a
string representation in return. Lucene will index this string. While you can do pretty
much what you want in the bridge implementation, this example shows a couple of
interesting implementation decisions.

 Like all built-in bridges, this bridge returns null when a null object is provided.
Hibernate Search does not add null string values to the index. Chapter 3 and espe-
cially section 3.1.2 explain the reasons behind this decision. While it is recommended
to return a null string when a null object is passed, your bridge can go against this rule.

 When the bridge receives an unexpected type (in the custom bridge example,
any type that is not a double is unexpected), a runtime exception is raised and
indexing fails. Once again, a bridge can decide to ignore the issue and degrade

Raise runtime
exceptions on errors

E

Padding
implementation

F

95Mapping the unexpected: custom bridges
nicely, but in most cases the right approach is to raise an alarm to the developer in
the form of an exception.

 A very useful technique is used in this bridge example: number padding. The only
data structure Lucene understands is a string. In particular, comparisons are entirely
based on strings. Unfortunately, string comparisons and number comparisons don’t
play together well. The number 2 is inferior to the number 12, but the string "2" is
superior to the string "12". One way to align the number and string comparison is to
pad numbers. Padding consists of adding nonsignificant leading zeros; thus, "002" is
inferior to "012". The main drawback of this technique is that the number of leading
zeros has to be decided upfront. Changing the maximum allowed value would mean
reindexing all the elements.

 The bridge we’ve just designed is not sufficient to bridge an identifier property or
to bridge properties that need to be projected. The next section describes the extra
steps required to make a simple two-way bridge.
TWO-WAY SIMPLE CUSTOM BRIDGES

As indicated by the name, a two-way bridge converts the information back and forth
from the object model to the Lucene model. Bridges that degrade information, such
as the rounding bridge described in listing 4.4, are not good candidates because
there’s no way to extract the original information from Lucene. Two-way bridges are
necessary when the bridge is used on either:

■ An identifier property
■ A property meant to be projected (read back from the index)

A two-way bridge that aims to convert an object to and from a string representation
implements org.hibernate.search.bridge.TwoWayStringBridge. Listing 4.5 shows
an implementation.

@Entity
@Indexed
public class Item {
 @Field
 @FieldBridge(
 impl=PaddedPriceBridge.class
)
 private double price;
...
}

/**
 * pad a price with up to 3 non-significant 0s
 * Accept double and Double
 */
public class PaddedPriceBridge implements TwoWayStringBridge {
 public static int PAD = 3;

 public String objectToString(Object value) {

Listing 4.5 Implementation of a two-way bridge

Declare the bridge
implementation

BImplements
TwoWayStringBridge

96 CHAPTER 4 Mapping more advanced data structures
 if (value == null) return null;
 if (value instanceof Double) {
 return pad((Double) value);
 }
 else {
 throw new

IllegalArgumentException(PaddedRoundedPriceBridge.class
 + " used on a non double type: "
 + value.getClass());
 }
 }

 public Object stringToObject(String price) {
 return Double.parseDouble(price);
 }

 private String pad(double price) {
 String rawDouble = Double.toString(price);
 int dotIndex = rawDouble.indexOf('.');
 if (dotIndex == -1) dotIndex = rawDouble.length();
 if (dotIndex > PAD)
 throw new IllegalArgumentException(
 ➥"Try to pad on a too big number");
 StringBuilder paddedLong = new StringBuilder();
 for (int padIndex = dotIndex ; padIndex < PAD ; padIndex++) {
 paddedLong.append('0');
 }
 return paddedLong.append(rawDouble).toString();
 }
}

B A two-way bridge implements TwoWayStringBridge. C Two-way string bridges
implement the conversion between the string representation stored in the Lucene
index and the object representation.

 There’s nothing spectacular in listing 4.5. The TwoWayStringBridge interface
includes a stringToObject method; the method takes the string value stored in the
Lucene index as a parameter and expects the object representation as the return
value. In addition to the rules and common practices we’ve discussed for regular
StringBridges, TwoWayStringBridges should ensure that the object passed as an argu-
ment and the result of the operation bridge.stringToObject(bridge.objectTo-
String(object)) are similar from a user’s point of view. In Java land it usually
translates as being equal per the Object equals operation. If the bridge doesn’t follow
this rule, it cannot be used for identity properties, and the projected results are likely
to surprise your users because the values retrieved would not be the values stored.

 While not all one-way bridges can support the two-way contract, the authors
encourage you to try to use two-way bridge contracts as much as possible. It’s much
easier to design a two-way bridge from the ground up than to morph a one-way bridge
into a two-way bridge.

 You may have noticed in the last two examples that the padding choice is hard-
coded into the bridge. It’s not possible to reuse the same bridge for numbers larger

Reverse
operation
objectToString

C

97Mapping the unexpected: custom bridges
than 1000. While it was a decent choice for prices in a store that sells DVDs and food,
what happens if we start to develop a side business around a home cinema? The pad-
ding value more likely should be set to 5. Why not make it a parameter?

4.1.3 Injecting parameters to bridges

You can declare parameters in a bridge declaration. Providing parameters allows the
bridge implementation to be more generic. To receive parameters, bridges need to
implement the ParameterizedBridge interface. Let’s enhance listing 4.4. Listing 4.6
uses parameters injected at declaration time.

@Entity @Indexed
public class Item {
 @Field
 @FieldBridge(
 impl=ParameterizedPaddedRoundedPriceBridge.class,
 params= { @Parameter(name="pad", value="3"),
 @Parameter(name="round", value="5") }
)
 private double price;
...
}

/**
 * Round a price by range of round, going to
 * the upper boundaries; pad the result with up to pad
 * non-significant 0s.
 * Accept double and Double
 */
public class ParameterizedPaddedRoundedPriceBridge
 implements StringBridge, ParameterizedBridge {
 private int pad = 6; //9,999,999
 private double round = 1d; //by default round to the next
 ➥non decimal amount

 public void setParameterValues(Map parameters) {

 if (parameters.containsKey("pad")) {
 pad =
 ➥Integer.parseInt((String) parameters.get("pad"));
 }

 if (parameters.containsKey("round")) {
 round =
 ➥Double.parseDouble((String) parameters.get("round"));
 }
 }

 public String objectToString(Object value) {
 if (value == null) return null;
 if (value instanceof Double) {
 long price = round((Double) value);
 return pad(price);

Listing 4.6 Inject parameters by implementing ParameterizedBridge

BInject parameters

Implement the
appropriate
interface

C

Parameters are injected
into setParameterValues

98 CHAPTER 4 Mapping more advanced data structures
 }
 else {
 throw new
 ➥IllegalArgumentException(ParameterizedPaddedRoundedPriceBridge.class
 + " used one a non double type: " +
 ➥value.getClass());
 }
 }
 private long round(double price) {
 double rounded = Math.floor(price / round) * round;
 if (rounded != price) rounded+= round; //we round up
 return (long) rounded;
 }

 private
 String pad(long price) { String rawLong = Long.toString(price);
 if (rawLong.length() > pad)
 throw new IllegalArgumentException("Try to pad on
 ➥a number too big");
 StringBuilder paddedLong = new StringBuilder();
 for (int padIndex = rawLong.length() ; padIndex < pad ;
 ➥padIndex++)
{
 paddedLong.append('0');
 }
 return paddedLong.append(rawLong).toString();
 }
}

B Declare bridge parameters using key/value pairs. C setParameterValues receives
a map of parameter names and values.

 Parameters are declared when the bridge usage is declared. This set of key/value
pair parameter values is passed to bridges implementing ParameterizedBridge.

 Parameters are quite convenient because they provide flexibility to bridge imple-
mentations. The authors recommend that you define sensible default values for each
parameter if possible. Doing so makes the bridge user’s life much easier. In listing 4.6,
we set the default padding value to be high enough to please most use cases. We also
rounded by the unit as decimals are usually not interesting when comparing prices.
Of course, any bridge user can override these default values at any time.

Use parameters

What about thread-safety?
Bridges are used in a multithreaded environment. Developers should make sure that
bridge methods can be executed concurrently. Because Hibernate Search injects pa-
rameters into bridges in a thread-safe way, setParameterValues implementations
don’t need to guard against concurrency issues.

In general, if you don’t change the state of the bridge object after the call to set-
ParameterValues, your bridge implementation is safe. Hibernate Search guarantees
that the state defined in setParameterValues() is visible to any subsequent bridge
method calls.

99Mapping the unexpected: custom bridges
 Not all bridges can cope with the idea of converting the object value into a string.
Some bridges need more control and require access to the underlying Lucene API.

4.1.4 Writing flexible custom bridges

Some bridges may need to go closer to the metal and have access to the underlying
Lucene Document object. One fairly common use case involves mapping a property
(from the object side) and splitting the information into multiple fields. Let’s start
with a field bridge that converts from the object world to the index world, one way.
ONE-WAY FLEXIBLE CUSTOM BRIDGES

A marketing study uncovered that our DVD
store is visited by a lot of non-English-speak-
ing persons. These persons are interested
in rating movies based on voiceover perfor-
mance. Our object model represents this
data as a Map<String, String> in Item.
The map key represents the language used
in the voiceover, and the map value repre-
sents its user rating. We’d like to be able to
do full-text query based on the rating value
per language. One approach is to store
each language in its own field, as shown in
figure 4.1.

 To implement such a bridge, you need
access to the underlying Lucene Document
instance. Bridges can access this informa-
tion when they implement FieldBridge.
Listing 4.7 shows a possible implementation.

@Entity
@Indexed
public class Item {
 ...

 @Field(store=Store.YES)
 @FieldBridge(impl=MapKeyPerFieldBridge.class)
 @CollectionOfElements @MapKey
 private Map<String, String> ratePerDubbing =

 new HashMap<String, String>();
}

/**
 * Only Map<String, String> are accepted as value
 * For each key in the map, create a field name.<key> (lowercase) and index
 * its value.
 * For example the map [english:good, french:moyen, spanish:excellente]

Listing 4.7 Use a FieldBridge to convert a map into several fields

Figure 4.1 We represent each key in the map
as a separate field in the Lucene index. For a
given instance, a key may or may not be
present in the map (and in the index).

Define the bridge
implementation

100 CHAPTER 4 Mapping more advanced data structures
 * will result in the following fields in the index
 * <pre>
 * name.english => good
 * name.french => moyen
 * name.spanish => excellente
 */
public class MapKeyPerFieldBridge implements FieldBridge {

 public void set(String name,
 Object value,
 Document document,
 LuceneOptions luceneOptions) {
 //we expect a Map<String, String> here. checking for Map for
 ➥simplicity
 if (! (value instanceof Map)) {
 throw new IllegalArgumentException("support limited to
 ➥Map<String, String>");
 }

 @SuppressWarnings("unchecked")
 Map<String, String> map = (Map<String, String>) value;

 for (Map.Entry<String, String> entry : map.entrySet()) {
 Field field = new Field(
 name + '.' + entry.getKey().toLowerCase(),

entry.getValue().toLowerCase(),
 luceneOptions.getStore(),
 luceneOptions.getIndex(),
 luceneOptions.getTermVector()
);
 field.setBoost(luceneOptions.getBoost());
 document.add(field);
 }
 }
}

B The FieldBridge interface consists of a set method that provides access to the
underlying Lucene artifacts. C The proposed field name is provided by the declara-
tion (and defaults to the property name). It is recommended that you use name as the
base or prefix to define field names stored in the Lucene Document. D Provide the
value to convert (either the property value for a field bridge or the entity instance for
a class bridge). E The Lucene Document instance represents the entity instance in the
index. F LuceneOptions is a holder passed by the declaration to the bridge imple-
mentation. It is recommended that you use these options when building Lucene
fields. G The bridge is responsible for creating new field(s). A Lucene Field object
takes a name, the string value indexed, and a few indexing configuration parameters
in the constructor. We recommend using the LuceneOptions values. H Boost needs
to be injected in the boost property. I Don’t forget to add the newly created field
into the Lucene document!

 The FieldBridge’s set method is called when an entity (for a class-level bridge) or
a property (for a property-level bridge) is indexed into a Lucene document by

BImplement
FieldBridge

Proposed field nameC
Value to indexD

Lucene Document
instance

E

FVarious indexing strategies

GCreate the new field

Inject boostH

Add new field
to documentI

101Mapping the unexpected: custom bridges
Hibernate Search. One Document instance is created per entity instance indexed. All
bridges defined on this entity are called, and the same document instance is passed
along. The set method must be implemented in a thread-safe way so it can be
accessed concurrently by Hibernate Search.

NOTE Users of Hibernate Search 3.0 need to implement a slightly different ver-
sion of the FieldBridge interface, in which the set method has the fol-
lowing signature:
public void set(String name,
 Object value,
 Document document,
 Field.Store store,
 Field.Index index,
 Float boost);

The FieldBridge interface gives tremendous flexibility to bridge designers because
they have access to the native Lucene APIs. This flexibility is particularly valuable for
the following use cases:

■ Indexing an entity or property in a custom structure that will facilitate future
queries (for example, one field per map key).

■ Adding metadata into the index for a given entity. A special class bridge is then
responsible for adding this information. We could envision adding a promotion
flag to some DVDs to push them higher in our query result.

Don’t limit your imagination to these examples. We’ve introduced the FieldBridge
interface in order to face the unexpected and let you go beyond the standard Hiber-
nate Search capabilities.

 The sharp reader has probably noticed that such a bridge cannot be used for iden-
tifier properties or projected properties (projected properties extract their value from
the Lucene index rather than from the persistence context; see section 6.5). Don’t
worry; we have a solution for you.
TWO-WAY FLEXIBLE CUSTOM BRIDGES

In the previous chapter, we left a problem unsolved: composite identifiers. Hibernate
Search doesn’t support composite identifiers out of the box, but you can easily write
your own bridge to support such a case. Let’s get back to the last chapter’s example. A
Person entity has a composite identity property object comprising both firstName
and lastName. A bridge that’s intended to be used on identifier properties needs to
fulfill three actions:

■ Indexing and storing the property into the Lucene index
■ Building the identifier property out of the values stored in a given Document

instance (it requires a two-way bridge)
■ Ensuring that a Document can be found and uniquely identified from the identi-

fier property value (through a Lucene query)

102 CHAPTER 4 Mapping more advanced data structures
Let’s see how the bridge solves each of these needs. Listing 4.8 is an example of a com-
posite identifier bridge for a Person object. Note that a property marked as @Documen-
tId is stored in the Lucene index. This must be the case in order for two-way bridges
to perform their work.

@Entity
@Indexed
public class Person {
 @EmbeddedId @DocumentId Embedded id
 @FieldBridge(impl=PersonPkBridge.class)
 private PersonPK id;
 ...
}

public class PersonPkBridge implements TwoWayFieldBridge {

 public Object get(String name, Document document) {
 PersonPK id = new PersonPK();

 Field field = document.getField(name + ".firstName");
 id.setFirstName(field.stringValue());

 field = document.getField(name + ".lastName");
 id.setLastName(field.stringValue());
 return id;
 }

 public String objectToString(Object object) {
 PersonPK id = (PersonPK) object;

 StringBuilder sb = new StringBuilder();
 sb.append(id.getFirstName())
 .append(" ")
 .append(id.getLastName());

 return sb.toString();
 }

 public void set(String name,
 Object value,
 Document document,
 LuceneOptions luceneOptions) {
 PersonPK id = (PersonPK) value;
 Store store = luceneOptions.getStore();
 Index index = luceneOptions.getIndex();
 TermVector termVector = luceneOptions.getTermVector();
 Float boost = luceneOptions.getBoost();

 //store each property in a unique field
 Field field = new Field(name + ".firstName",
 id.getFirstName(),
 store, index, termVector);
 field.setBoost(boost);
 document.add(field);

Listing 4.8 Composite identifier bridge for a Person object

Use the custom
field bridge

Build composite
identifier from
document

B

Create unique
string from
identifier

C

Store each
subproperty
in a field

D

103Mapping the unexpected: custom bridges
 field = new Field(name + ".lastName",
 id.getLastName(),
 store, index, termVector);
 field.setBoost(boost);
 document.add(field);

 //store the unique string representation in the named field
 field = new Field(name,
 objectToString(id),
 store, index, termVector);
 field.setBoost(boost);
 document.add(field); } }

The main goal of a two-way field bridge is to store a property into the index (the set
method) and later on to be able to build the property object from the information
stored in the index (the get method).

 The get method reads data from the document in order to build the composite
identifier object B; each property is stored in a specific field. objectToString con-
verts the composite identifier into a unique string representation C. Hibernate
Search uses this string to find a specific document (through a term query). During
indexing, each subproperty is stored in the index in an individual field D. These sub-
properties will be read later on when Hibernate Search builds the composite identi-
fier property by calling get. It’s preferable to name these fields under the name
namespace. The unique string representation of the composite identifier is stored in
the name field E. Hibernate Search queries this field (through a term query) to
retrieve a document by its identifier value.

 The example in listing 4.8 was simplistic; please don’t use firstname/lastname as a
primary key in a real system. The authors encourage you to always use a surrogate key
instead of composite keys.

 In the last example, we used . (dot) and the property namespace to build field
names. This helps us build Lucene queries that are intuitive to someone familiar with
the domain model. Table 4.1 shows how a query looks similar to navigation in an
expression language.

 set, get, and objectToString must be thread-safe because a bridge is shared by
many concurrent calls.

Table 4.1 Queries are similar to object navigation in an expression language when Lucene field names
are named after the root namespace followed by a dot (.) followed by the property name.

Object navigation Lucent query

item.getRatePerDubbing().

 ➥get("french").

 ➥equals("moyen");

ratePerDubbing.french:moyen

person.getId().

 ➥getLastName().

 ➥equals("Griffin");

id.lastName:Griffin

Store unique
representation
in field nameE

104 CHAPTER 4 Mapping more advanced data structures
On top of the rules we’ve just discussed, a two-way bridge targeted at supporting iden-
tifier properties must follow two additional rules:

■ objectToString must generate a unique string representation of the identifier.
Hibernate Search will search this string in the field named after the name
parameter in the set method. This query retrieves the document from its
entity’s identifier property.

■ The set method must add a field named name (a parameter of the method
set), which indexes the objectToString value untokenized. A Lucene term
query will be used to retrieve a document by its identifier.

You’ve just discovered the most flexible way to convert an object structure to a Lucene
index and are now ready to face the Wild, Wild West of domain models.

 Custom bridges are the most popular extension point of Hibernate Search. While
in most situations you won’t need to use custom bridges, they’ll soon become an
essential tool for mapping exotic domain models. You might feel right now that this
puts too much power in your hands, that you don’t need such flexibility (and in a lot
of cases you’ll be right), but after reading chapters 6 and 7 on queries, you’ll need to
bend the index structure to suit your needs in order to make the most of your full-text
queries. Bridges will be there for you.

4.2 Mapping relationships between entities
Until now, we have quite elegantly avoided talking about a very important aspect of
domain models: relationships. Without relationships, you simply could not express
queries involving more than one entity; you could not search for all authors whose
name is Bernard (property Author.name) and who live in Atlanta (property
Author.address.city). It’s important to preserve in one way or another the concept
of relationship in the index structure.

4.2.1 Querying on associations and full-text searching

Deep inside both the relational model and the object model lies the idea of relation-
ship (or association) between entities. Both models allow you to navigate from one
entity to an associated entity. Because associations are a native part of the model, it’s
possible to express queries that apply restrictions on associated objects. We’ll call such
queries correlated queries.

 Unfortunately in Lucene, queries on related documents cannot be expressed; the
notion of relationship between documents has not been built into Lucene. Figure 4.2
shows the different concepts as they are represented in the object model, the rela-
tional model, and the index model.

 The main consequence for us is that we cannot express correlated queries. The
reasoning behind Lucene’s choice is interesting. Lucene is not a database; it is an
index. Indexes typically sacrifice normalization, data precision, and query expressive-

105Mapping relationships between entities
ness for performance. This is what we’re asking them to do. Lucene, which is essen-
tially an index technology, follows this rule.

 Hibernate Search works around this problem by denormalizing associations.
 Since a Lucene query takes only a single document into consideration to evaluate

its relevance and has no notion of a document join or association, contrary to the
object and relational models, Hibernate Search indexes the object graph into a single
document. In figure 4.3, you can see that when the item entity is indexed, its associ-
ated director and actors are indexed in the same document.

 Each of the association’s entity properties is indexed in the association’s
namespace. In our example, the director’s name is indexed in director.name, which
is exactly how we’d express a navigation to the director’s name of a given item in an
expression language or in HQL.

Figure 4.2 Expressing queries on related objects in the object, relational, and index worlds

Figure 4.3 Hibernate Search denormalizes associations to make them queryable. The information
in an object graph is rendered in a flat form in a single Lucene document.

106 CHAPTER 4 Mapping more advanced data structures
 It’s worth noting that collections are flattened during the denormalization pro-
cess. In our example this means that the names of all actors associated with a given
item are stored and indexed in a single field, actors.name. What are the conse-
quences? In theory, it limits some of the query’s expressibility. In practice, this
should not affect you too much. With this model, it’s possible to express queries
such as returning the items where:

■ Both Cruise and McGillis are in the movie.
■ One of the actors is either Cruise or McGillis.
■ Cruise is in the movie but not McGillis.

You won’t be able to express queries involving a correlation between two properties of
a given entity in a collection. Let’s imagine that Actor has a homeTown property. You
won’t be able to express a query like "return items where one of the actors is
Tom and his hometown is Atlanta".

 The reason is that the whole collection of data is seen as a single element. Don’t
give up, though. It’s often possible to either:

■ Turn the query upside down by targeting actor as the root entity, then collect-
ing the matching items.

■ Use a query filter to refine an initial query (see chapter 8).

It would be quite disastrous to index the entire object graph every time a root object
is indexed. The index would be quite big, indexing would be long, and the index
would be polluted with tons of not–so-useful information. Just like property indexing,
Hibernate Search uses an opt-in approach: In the mapping you decide which associ-
ated object or collection needs to be indexed based on the type of queries you need
to perform.

 The rest of the chapter will show how to map associations. We’ll start with a simple
case: embedded objects.

I tried but cannot find a way around the collection limits
Sometimes you’ll end up at a dead-end. No matter how hard you try, you won’t be
able to express the query in Lucene. Good advice here is to step back and see if an
HQL query could do the job. Full-text searching is like a new toy in the beginning.
You’ll be tempted to use it more than necessary. Always remember that you can go
back to plain HQL or work in a three-step process: Apply part of the query (the dis-
criminant part) in Lucene, collect the matching identifiers, and run an HQL query that
restricts by these identifiers and some other criteria.

107Mapping relationships between entities
4.2.2 Indexing embedded objects

Embedded objects in Java Persistence (they’re called components in Hibernate) are
objects whose lifecycle entirely depends on the owning entity. When the owning entity
is deleted, the embedded object is deleted as well.

 Let go back to our DVD store example. A DVD is rated. Rating has several dimen-
sions: scenario, soundtrack, picture, and of course an overall rating. A rating doesn’t
make sense without a DVD, so we’ll model it as an embedded object. To index the asso-
ciated Rating object, simply place @IndexedEmbedded on the association and mark the
Rating properties for indexing. The name @IndexedEmbedded is derived from the
operation performed; we embed the indexing information in the main document.
Listing 4.9 describes how to declare an object as embedded in the index.

@Embeddable
public class Rating {
 @Field(index=Index.UN_TOKENIZED) private Integer overall;
 @Field(index=Index.UN_TOKENIZED) private Integer scenario;
 @Field(index=Index.UN_TOKENIZED) private Integer soundtrack;
 @Field(index=Index.UN_TOKENIZED) private Integer picture;
 ...
}

@Entity
@Indexed
public class Item {
 @IndexedEmbedded private Rating rating;
 ...
}

When Hibernate Search finds an @IndexedEmbedded annotation on rating B, it pro-
cesses the Rating properties and indexes each property marked with an @Field anno-
tation (or an @IndexedEmbedded annotation). It also executes each class-level bridge
present on the Rating object. There’s a small difference: Each field name in the
Lucene index is prefixed with the name of the association and a dot, rating. in our
example. The Lucene document contains rating.overall, rating.scenario, rat-
ing.soundtrack, and rating.picture. This approach makes queries smell like regu-
lar object property navigations.

 If the association isn’t marked with @IndexedEmbedded, it’s ignored.
 Sometimes the field prefix generated by Hibernate Search doesn’t match your

expectations because you’re mapping to an existing index, or your index-naming con-
ventions are different, or your taste is different. The prefix attribute lets you control
the prefix used to index properties of the associated objects. Note that in listing 4.10
queries need to target rate_overall rather than rating.overall. The dot is part of
the default prefix and disappears when overridden.

Listing 4.9 Using @IndexedEmbedded objects in the same Lucene document

Mark
properties
for indexing

Add new field to Mark the
association for indexingB

108 CHAPTER 4 Mapping more advanced data structures

@Embeddable
public class Rating {
 @Field(index=Index.UN_TOKENIZED) private int overall;
 @Field(index=Index.UN_TOKENIZED) private int scenario;
 @Field(index=Index.UN_TOKENIZED) private int soundtrack;
 @Field(index=Index.UN_TOKENIZED) private int picture;
 ...
}

@Entity
@Indexed
public class Item {
 @IndexedEmbedded(prefix="rate_") private Rating rating;
 ...
}

@IndexEmbedded B marks the association as embedded. The Lucene document con-
tains rate_overall, rate_scenario, rate_soundtrack, and rate_picture.

 Some developers like to work with interfaces rather than implementations to pro-
vide so-called abstraction. While the authors don’t understand the reasoning for
domain model objects, Hibernate Search lets you use this code style. Imagine that
Rating is an interface and the implementation is RatingImpl. If you use the same
mapping as shown in listing 4.9, Hibernate Search complains about Rating not being
a mapped entity. @IndexEmbedded.targetElement (as shown in listing 4.11) forces
Hibernate Search to use a specific class instead of the returned type.

@Embeddable
public class RatingImpl {
 @Field(index=Index.UN_TOKENIZED) private int overall;
 @Field(index=Index.UN_TOKENIZED) private int scenario;
 @Field(index=Index.UN_TOKENIZED) private int soundtrack;
 @Field(index=Index.UN_TOKENIZED) private int picture;
 ...
}

@Entity
@Indexed
public class Item {
 @IndexedEmbedded(targetElement=RatingImpl.class)
 private Rating rating;
 ...
}

@IndexedEmbedded B marks the association as embedded. RatingImpl is used in lieu
of Rating to find the index mapping.

 So far we’ve shown you simple value associations, and you may wonder if they work
for collections. Absolutely! The same annotation is used to mark a collection as embed-
ded in the index document. Each embedded object in the collection is indexed. As

Listing 4.10 Override the @IndexEmbedded default naming convention

Listing 4.11 Use an interface in an annotation marked for @IndexEmbedded

Association prefix
is overridden

B

Define
target class

B

mailto:@IndexEmbedded.targetElement

109Mapping relationships between entities
discussed in section 4.2.1, the same Lucene field contains all the collection element
values for a given property. Listing 4.12 describes how to mark a collection as indexed.

@Embeddable
public class Country {
 @Field private String name;
 ...
}

@Entity
@Indexed
@ClassBridge(name="promotion", index=Index.UN_TOKENIZED,

impl=ItemPromotionBridge.class)
public class Item {
 @CollectionOfElements
 @IndexedEmbedded
 private Collection<Country> distributedIn = new ArrayList<Country>();
 ...
}

All collections supported by Hibernate are supported by Hibernate Search:

■ java.util.Collection
■ java.util.Set
■ java.util.SortedSet
■ java.util.List
■ java.util.Map
■ java.util.SortedMap
■ arrays of objects

Note that the index part of indexed collections (List and Map) and arrays is not
indexed in the document. If you need to index the index (or key), consider using a
custom bridge, as explained in section 4.1.4.

 Don’t abuse @IndexedEmbedded. Just like for @Field, you must think about the
queries your users need to perform and mark associations for indexing only if you
need to. Be particularly careful about collections. Indexing time can be much longer
than usual if the collection size is significant, because Hibernate Search needs to walk
through each element and index the information. This becomes even worse if ele-
ments in the indexed collection themselves contain a collection marked as @Indexed-
Embedded. Not only will indexing time be longer, but the index size will increase
because more data is indexed.

 You’ve now mastered indexing embedded objects and collections of embedded
objects. The next section brings us to the problem of indexing associations between
entities. We’ll also discuss how to limit the amount of association indexing in a cas-
cade and thus define a graph depth boundary for embedded associations. While this
limitation can be applied to and is sometimes useful for collections of embedded
objects, it’s much more common when associations between entities are indexed.

Listing 4.12 Mark a collection as embedded in the indexed document

Collection of elements
embedded in the document

110 CHAPTER 4 Mapping more advanced data structures
4.2.3 Indexing associated objects

When it comes to associations between entities, things are a bit more complicated
compared to the associations with embedded objects we just described. At first sight,
associations with embedded objects and associations with entities seem quite similar,
and, indeed, they are in many ways. The big difference lies in the lifecycle. Embedded
objects’ lifecycles are entirely dependent on their owning entity and cannot be refer-
enced by other entities. This is all good and fine for Hibernate Search because when
the embedded object is updated, Hibernate Core will raise an event claiming that the
owning entity is updated. Hibernate Search has only to update the Lucene document
for this entity.

 This isn’t as easy in associations between entities. Remember that using @Indexed-
Embedded is essentially a way to denormalize your data and embed the information of
two or more entities into a single Lucene document. When an associated entity is
updated, Hibernate Search needs to know which other entities this entity is associated
with in order to update their Lucene documents. Otherwise the denormalized data
will be desynchronized (see figure 4.4).

Let’s take Figure 4.4 as our working example. When actor is updated, Hibernate
Search needs to update the items related to actor. One strategy would be to update all
the items in our inventory to make sure everything is up to date. Of course this solution
doesn’t fly very far because it would mean loading all the items from the database and
reindexing them. Instead, Hibernate Search requires us to make the association bidi-
rectional (if it isn’t already) and mark the association pointing back to the parent
entity with @ContainedIn. Listing 4.13 shows an example of @ContainedIn usage.

@Entity @Indexed
public class Item {
 @ManyToMany

Listing 4.13 Relations between entities should be bidirectional

Figure 4.4 When a change is made to an associated entity, Hibernate Search must
update all the documents in which the entity is embedded.

111Mapping relationships between entities
 @IndexedEmbedded
 private Set<Actor> actors;

 @ManyToOne
 @IndexedEmbedded
 private Director director;
 ...
}

Entity @Indexed
public class Actor {
 @Field private String name;

 @ManyToMany(mappedBy="actors")
 @ContainedIn
 private Set<Item> items;
 ...
}

@Entity @Indexed
public class Director {
 @Id @GeneratedValue @DocumentId private Integer id;
 @Field private String name;

 @OneToMany(mappedBy="director")
 @ContainedIn
 private Set<Item> items;
 ...
}

@ContainedIn B is paired with an @IndexedEmbedded annotation on the other side of
the relationship. @ContainedIn can be placed on both collections and single-value
associations whether or not the association is the owning side of the bidirectional rela-
tionship. When Hibernate Search finds a change in an entity having an @ContainedIn
association (director in our example), it marks the associated entity instance(s) as
changed (items contained in director.items in our example). One or more Lucene
document updates will then be triggered.

 Some people are confused by @IndexedEmbedded and @ContainedIn. They don’t
know which side needs to be marked as @IndexedEmbedded to enable the query they
want. Think about it this way: @IndexedEmbedded is the property you can navigate to in
your queries; @ContainedBy is not.

NOTE Sometimes, it’s inconvenient to have to make a relationship bidirectional
to please Hibernate Search. If the associated entity never changes in your
system (immutable entity), you don’t have to add @ContainedIn. Since
no changes will happen behind Hibernate Search’s back, your index will
be kept synchronized.

If the associated entity changes, but you cannot afford a bidirectional
relationship, it’s always possible to trigger a manual reindexing of the
owning entity (see section 5.4). Taking listing 4.13 as an example, you
could decide to manually reindex all the item entities every night. Or you
could keep track of the actor changes and cherry-pick the item entities
that need to be reindexed using an HQL query.

Embed actors
when indexing

Embed director
when indexing

actor is contained
in item index

B

director is contained
in item index

112 CHAPTER 4 Mapping more advanced data structures
It’s not uncommon to have nested associations: embedded entities containing embed-
ded relationships. We can even imagine these embedded relationships pointing to
other entities that have embedded relationships and so on. You should avoid embed-
ding too much information in a single Lucene document because indexing takes lon-
ger and the index directory grows bigger. A Lucene document should contain only
the necessary bits of information to express planned queries. This poses the question
of how to stop embedding associations and at which level to stop.

 By default, Hibernate Search stops embedding associations in a given object’s
graph branch when the same class has already been processed. Figure 4.5 describes
the default strategy. Hibernate Search raises an exception in this situation to prevent
infinite loops created by circular relationships.

 The default behavior won’t always match your needs:

■ It’s common to have a class associated with itself that needs to be indexed (par-
ent-child relationships from the same class are a good example).

■ Entities that are both embedded and root indexed could lead to deep indexed
object graphs. For example, the Actor entity is embedded in the Item entity but
is also indexed separately because we’d like to be able to search for actors spe-
cifically.

@IndexedEmbedded allows you to control the depth at which association embedding
stops. By default, the depth is not limited, and the method described in figure 4.5
applies. A depth limit is defined per association; it’s the maximum amount of embed-
ding allowed in the branch started by the association (including the current associa-
tion). Figure 4.6 is a revised version using an explicit depth limit.

 In figure 4.6, each association is either marked with an explicit depth or left at the
default depth (infinite). The upper branch shows that from entity A, Hibernate
Search is allowed to embed only two associations in depth for that branch. B is then
included. The association between B and C indicates that the depth from this associa-
tion cannot be higher than three. The association from C to B is not embedded
because the maximum number of jumps allowed by the association from A to B was

Figure 4.5 By default Hibernate Search
raises an exception when embedding an
association if a class has already been
processed in a given branch.

113Mapping relationships between entities
two (one jump from A to B and one jump from B to C). The third branch shows how
to limit the depth in a branch involving circular references. The last branch, using an
infinite depth, shows the default resolution explained by figure 4.5. Infinite depth (or
undefined depth), which is the default if you don’t set a depth, will stop right before
the same class is encountered for the second time (to avoid circularity issues).

 The depth attribute in @IndexedEmbedded (see listing 4.14) is the place to define
the maximum depth for a given association.

@Entity @Indexed
public class Item {
 @ManyToMany
 @IndexedEmbedded(depth=4)
 private Set<Actor> actors;

 @ManyToOne
 @IndexedEmbedded(depth=1)
 private Director director;
 ...
}

One last warning: Embedding too many associations is a bad practice. To convince
you, remember that Hibernate Search needs to read the data for all the associated
entities. This could load a big object graph if too many associations are marked
@IndexedEmbedded.

Listing 4.14 The maximum depth is defined by @IndexedEmbedded.depth

Figure 4.6 A depth limit can
be defined per association.
It represents the maximum
amount of embedding
allowed, including the
current association.

Limit the depth

Limit the depth

mailto:@IndexedEmbedded.depth

114 CHAPTER 4 Mapping more advanced data structures
4.3 Summary
In chapters 3 and 4, you have learned how to define the mapping Hibernate Search
uses to transparently convert domain models into index models. Chapter 4 specifically
showed you advanced strategies for mapping object graphs and, generally speaking,
for mapping any unforeseen object structure, thanks to the flexible bridge model.

 This was a lot of information, sometimes even boring (we know this crossed your
mind). The good news is that all this tedious learning is about to pay off in the follow-
ing chapters! Chapter 5 will explain how indexing happens, what you should care
about, and, more important, what you should not care about. The next part of the
book, part 3, will dive into queries and how to make the most of a full-text search.

Indexing: where, how,
what, and when
Indexing is the action of preparing data so Lucene can answer your full-text queries
in an efficient way. The index should be as close as possible to your real data
changes and not lag behind. Why does Lucene need to prepare data? In order to
answer full-text queries efficiently, Lucene needs to store some efficient representa-
tion of the data. Since most full-text search queries revolve around the idea of
words, the index is organized per word. For each word, the index structure stores
the list of documents and fields matching a given word as well as some statistical
information. Section 1.3.1 gave us an idea of the index structure kept by Lucene.

This chapter covers
■ Choosing and configuring directory providers
■ Choosing the appropriate analyzer
■ Understanding Hibernate Search transparent

indexing
■ Using manual indexing
115

116 CHAPTER 5 Indexing: where, how, what, and when
 Lucene’s job is to build this magic structure and enable its superpowers, right?
True, but it needs a little help from you:

■ You need to store the index structure.
■ You need to decide which of the features you require and which data prepara-

tion Lucene will do for you.
■ You need to ask Lucene to index your information.

The index structure in Lucene must be stored somewhere. The two main storage solu-
tions are in a file directory and in memory. We’ll cover how to ask Hibernate Search to
use each of these strategies.

 The key feature of full-text search solutions comes from their ability to split a text
into individual words and process these individual words in a way that will enhance
the query capabilities. In Lucene jargon, this processing is called analyzing. Analyzers
are a superpower framework: You can choose which analyzer to use or write one to set
your own magic tricks. We’ll describe a few of the analyzers Lucene provides and how
to configure them.

 In a pure Lucene usage you need to feed Lucene the data you want to search.
Some part of your program must read the data, transform the data into an indexable
format (we showed how to do that in chapters 3 and 4), and ask Lucene to index it.
This isn’t an easy task, and some difficulties arise along the way:

■ Gathering data (and if possible only the data that changes) can be long and
painful.

■ The index process in Lucene has to follow specific rules.

Indexing in Lucene requires you to know how things work. Here are some gotchas
you need to overcome:

■ You cannot run more than one indexing process per Lucene index.
■ Indexing a lot of data in one shot is faster than indexing documents one by

one.
■ You must determine how often you need to index your data—right away, once

per hour, or once a day.
■ After several change operations, a Lucene index needs to be optimized (defrag-

mented).

Problems add up quickly. The first problem becomes particularly tricky when you
need to put a clustered architecture in place. Soon you’ll start implementing some
helper classes around Lucene to cope with your situation, and you’ll have to make up
your mind about all those problems.

 Fortunately, Hibernate Search takes the indexing responsibility off your shoulders
and makes the whole process transparent for you and your application. Because a
transparent process doesn’t fit everybody’s architecture, Hibernate Search also lets
you index entities manually. We’ll cover all that in the last part of this chapter.

 But let’s first answer the question of where to store the index structure.

117DirectoryProvider: storing the index
5.1 DirectoryProvider: storing the index
Lucene stores its index structure in a Directory. A Directory is an abstract concept
that can be materialized in different storage structures. Lucene provides a filesystem
Directory as well as a RAM (in-memory) Directory out of the box. This is an extensi-
ble system, and you can find various implementations on the internet, including clus-
tered cache directories, a Berkeley database backend, and a JDBC backend.

 Hibernate Search integrates with the two default backends provided by Lucene.
The integration is handled by a directory provider. Before diving into the configura-
tion details for each backend, let’s examine how a Lucene directory is associated with
an entity.

5.1.1 Defining a directory provider for an entity

As you’ve seen in section 3.2.1, an entity is marked as indexed thanks to @Indexed.
The default index name is the fully qualified class name of the entity class, but you can
override this name by using the index attribute.

 All details concerning a given index are configured through configuration proper-
ties. As you’ve seen in chapter 2 (section 2.2.2), you can provide properties to Hiber-
nate Search through the following:

■ hibernate.properties file
■ hibernate.cfg.xml file if you use Hibernate Core
■ persistence.xml file if you use Hibernate EntityManager
■ Programmatic API (for example, Configuration.setProperty)

Each index can have specific key value properties defined in the configuration. To
define the type of directory provider for an index, use the directory_provider suffix,
as demonstrated in Listing 5.1.

hibernate.search.com.manning.hsia.dvdstore.model.Item.directory_provider
➥ org.hibernate.search.store.FSDirectoryProvider

The property name structure is composed of hibernate.search, followed by the
index name (the entity’s fully qualified class name by default), followed by the config-
uration suffix. In almost all applications, all indexes will share the same directory pro-
vider type. Hibernate Search provides some form of configuration inheritance. All
indexes will share properties from the default pool unless a setting is explicitly over-
ridden. Use the default key in lieu of the index name to define global values inher-
ited by indexes unless overridden.

 In listing 5.2, all indexes share the same directory provider definition, thanks to
the hibernate.search.default context, except Item, which overrides the
directory_provider value.

Listing 5.1 Setting the directory provider for a specific index

118 CHAPTER 5 Indexing: where, how, what, and when

hibernate.search.default.directory_provider
➥org.hibernate.search.store.FSDirectoryProvider
hibernate.search.com.manning.hsia.dvdstore.model.Item.directory_provider
➥org.hibernate.search.store.RAMDirectoryProvider

This mechanism drastically reduces the number of lines of configuration you need to
write and is not limited to the directory_provider property. Any property available
to a directory provider will be shared as well. Use this opportunity to reduce the con-
figuration settings.

 If you use sharded indexes (that is, an index split into several small indexes), the
configuration might change a bit. Read section 9.4.1 for more information on this
topic.

 Now that you know how to configure the directory provider for an index (or for a
set of indexes), let’s check the available opportunities.

5.1.2 Using a filesystem directory provider

The default and most useful storage for a Lucene directory is a filesystem (if possible,
a local filesystem). Such a model is efficient for several reasons:

■ The index can be huge, and most of the index structure will remain in the file-
system (as opposed to in memory).

■ Local filesystems are now fast enough to accommodate Lucene’s read opera-
tions efficiently.

■ Lucene caches information in memory to avoid unnecessary reads to the filesys-
tem. This caching is done at the IndexReader level, and Hibernate Search ben-
efits from it by reusing IndexReader instances as much as possible.

■ A filesystem is the most used and tested solution in Lucene deployments.
■ The index is persistent, and it can easily be backed up and replicated.
■ You can navigate into the index internals thanks to Luke (see section 2.6).

The filesystem storage is the default choice in Hibernate Search: If you don’t specify
the directory_provider property, org.hibernate.search.store.FSDirectoryPro-
vider is used.

 Where does Hibernate Search store the index directory? It tries to be as smart and
intuitive as possible and define names automatically out of the box, but it also lets you
override different part of the directory-naming strategy:

■ indexBase is the property suffix that describes the root directory containing the
index directories. The default value is the current directory (which is usually
where your virtual machine has been launched).

■ indexName is the property suffix that describes the index directory name; the
full path is defined by indexBase plus indexName. The default value for index-
Name is the index name (which itself defaults to the fully qualified class name of
the indexed entity); indexName is rarely used in Hibernate Search deployments.

Listing 5.2 All indexes except Item use the filesystem directory provider

119DirectoryProvider: storing the index
While Hibernate Search lets you define your filesystem index directory in a lot of
funky ways, the authors recommend that you define a single root directory (using
hibernate.search.default.indexBase) where all index directories are stored and
let the default strategy play its role from here. You’ll have a better understanding of
what’s going on, and maintenance will be much easier. Listing 5.3 is an example of a
directory structure where indexes follow Hibernate Search’s conventions.

Configuration
hibernate.search.default.indexBase /User/production/indexes

File directory structure
/Users
 /Production
 /indexes
 /com.manning.hsia.dvdstore.model.Item
 /com.manning.hsia.dvdstore.model.Actor

If possible, use a local filesystem or a storage area network (SAN) filesystem. Regular
network filesystems (NFS) tend to be problematic for Lucene. Lucene needs to
acquire a global pessimistic lock when it updates an index. The default locking strat-
egy represents the lock as a file. Due to some caching strategies in place in most net-
work filesystems, the lock file cannot always be read appropriately. If you absolutely
must use a network filesystem, the authors recommend that you check the Lucene
resources available on the subject. The Lucene team is making a lot of progress in
this area.

 While a filesystem is the mainstream way of storing indexes, another interesting
strategy is to store the index in memory.

5.1.3 Using an in-memory directory provider

It’s possible to define a Lucene index as stored in memory. Of course, as soon as the
application shuts down (more precisely as soon as the Hibernate SessionFactory or
EntityManagerFactory is closed), the index data goes away. It is nevertheless quite
useful in several situations.

 The primary situation is unit testing. Unit testing has spread across the develop-
ment community. The general idea is to test individual functionalities or subsystems
independently from each other. Speed is a primary concern. If a test suite is too long,
people have the tendency to not launch it and commit the code hoping for the best
(ah, humans!). Unit test purists test individual classes independently from each other
and are horrified when two subsystems are tested together. Let’s discuss what we, the
authors, think is a slightly more pragmatic approach.

 Thanks to in-memory databases such as HSQLDB, H2, or Derby, and thanks to the
abstraction provided by Hibernate, it’s possible to test a system all the way down to the
database from a fresh data set in a matter of seconds or milliseconds (as opposed to
minutes when a remote database is used). Hibernate Search lets you embrace this fast

Listing 5.3 The recommended approach to defining a filesystem index directory

The only property to set is
indexBase, the root directory

Each index directory will be
under indexBase and named
from its index

120 CHAPTER 5 Indexing: where, how, what, and when
approach to test Lucene indexes. Unit tests using both in-memory databases and in-
memory indexes can initiate quickly the data set before each test. The test then veri-
fies the application behavior in a well-defined environment that’s cleaned between
each test. While it’s possible to do the same with a regular database and a filesystem–
based index, the in-memory version makes the unit test suite run much faster, because
it avoids unnecessary network or filesystem input/output. You can find more informa-
tion on unit testing and in-memory approaches in section 9.5.2.

 If you followed the recommendation we gave you in the previous section (define a
default directory_provider), you can easily switch from an in-memory provider in
your unit tests to a filesystem–based directory provider in production (or in your ded-
icated test environment). Listing 5.4 shows two different configurations, depending
on the targeted environment (test or production).

Test Configuration
hibernate.search.default.directory_provider
➥org.hibernate.search.store.RAMDirectoryProvider

Production configuration
hibernate.search.default.indexBase /User/production/indexes
hibernate.search.default.directory_provider
➥org.hibernate.search.store.FSDirectoryProvider

The in-memory directory provider is org.hibernate.search.store.RAMDirectory-
Provider.

 In-memory indexes can also be used when the index is to be built quickly and
retained temporarily. These temporary indexes can be useful when some offline oper-
ations require fast searching for the duration of the batch process; the index is built
in-memory, used, then discarded. If the index needs to be made persistent, Lucene
allows you to persist an in-memory index in a filesystem at any moment.

 Be careful not to index too much data when using an in-memory index. It may
sound quite obvious, but the index size cannot go beyond the size of your memory or
OutOfMemoryException will become your worst nightmare. Speaking of nightmares,
so far we’ve left out the problems arising in a clustered environment.

5.1.4 Directory providers and clusters

You’ve seen that network filesystems have problems with hosting Lucene directories.
Can clusters work? Clustering Lucene indexes is problematic also because changing a
Lucene index requires a global pessimistic lock.

NOTE GLOBAL PESSIMISTIC LOCK—GLOBAL TO WHAT? When we refer to global
pessimistic locks, the global attribute is applied to all the players willing
to update a given Lucene index in a cluster of nodes. However, this lock
is not global to all directories in which your entities are indexed. One
global lock per Lucene Directory is present.

Listing 5.4 Two configurations, depending on test or production environment

121DirectoryProvider: storing the index
This global pessimistic lock limits the cluster scalability. As shown in figure 5.1, all
nodes willing to write must wait for the current writer to release the lock.

 To avoid the scalability problem, Hibernate Search provides a recommended
architecture to cluster a Lucene-based full-text indexing system. As shown in
figure 5.2, one master node is solely responsible for updating the Lucene index while
nonwriters (the slaves) execute full-text queries on a local copy of the index. On a reg-
ular basis, each slave updates incrementally its local version from the published mas-
ter version.

 This architecture has interesting advantages:

■ It doesn’t suffer the scalability problems we just described that are caused by the
global pessimistic lock (the lock is solely shared by the master).

■ Full-text searches don’t suffer from remote input/output latency because
they’re executed on a local index copy.

Figure 5.1 All writers must wait for the lock to be
released across the entire cluster.

Figure 5.2 One master is responsible for all writing operations. Each reader
(slave) copies the index from the master on a regular basis.

122 CHAPTER 5 Indexing: where, how, what, and when
You might wonder how Hibernate Search ensures that only the master node updates
the index. Slaves delegate the work to the master. We won’t describe the magic potion
here. You can read more on this subject in section 5.3.3 and in chapter 10.

Let’s see how to configure the directory providers for such an architecture. As in sec-
tion 5.1.2, the master and the slave directory provider work on a filesystem–based
local copy of the index. The same properties are used to configure the directory
(indexBase, indexName). In addition, the master node pushes a stable version of the
index to a common source directory. This directory will be polled regularly by the
slaves. Table 5.1 lists the properties available for master directory providers.

Table 5.1 Configuration of the master node directory provider

Property name Description

directory_provider org.hibernate.search.store.FSMasterDirectoryProvider
Directory provider implementation. While you can use a different implementation in
unconventional scenarios, FSMasterDirectoryProvider is the recom-
mended provider.

indexBase Root directory of the index directory working copy.

indexName Directory name of the working copy index. Defaults to the index name. This value
is used in conjunction with indexBase.

sourceBase Root directory of the index directory source. Typically a shared filesystem.

source Directory name of the source index. Defaults to the index name. This value is used
in conjunction with sourceBase.

refresh The working copy index is copied to the source every refresh seconds. The
default value is one hour (3600 seconds).

What about in-memory clusters?
Hibernate Search uses filesystem-based directories and copies them to the various
slaves. Why not use a distributed in-memory approach?

This is absolutely possible! Several providers such as JBoss Cache, Terracotta, and
GigaSpace offer solutions for using an in-memory distributed Lucene Directory. The
global pessimistic lock problem remains: This lock must be shared across the cluster
when index changes happen. The second factor you need to take into account is the
index size. Most of the time, the index doesn’t fit in memory. To work around this
problem, these solutions use some kind of garbage-collection mechanism that re-
leases bits of the index. When a released bit is needed back, it’s requested across
the network. You must compare the local filesystem input/output performance with
the network performance. We’ll discuss in-memory cluster models in chapter 10.

123DirectoryProvider: storing the index
The slave nodes copy the index stored in the source directory into their working copy
on a regular basis. The source directory is the shared content between master and
slaves. This directory is generally placed in a shared filesystem. Table 5.2 lists the prop-
erties available for slave directory providers.

Usually you’ll simply need to configure directory_provider, indexBase, and
sourceBase (as shown in listing 5.5) and let the default values finish the work for you.

Master configuration

hibernate.search.default.directory_provider
➥ org.hibernate.search.store.FSMasterDirectoryProvider

refresh every half hour
hibernate.search.default.refresh 1800

master working directory location
hibernate.search.default.indexBase /Users/prod/lucenedirs

source directory location where the master is copied to
hibernate.search.default.sourceBase
➥ /mnt/sourcevolume/lucenedirs

Slave configuration

hibernate.search.default.directory_provider
➥ org.hibernate.search.store.FSSlaveDirectoryProvider

refresh every half hour
hibernate.search.default.refresh 1800

slave working directory location
hibernate.search.default.indexBase /Users/prod/lucenedirs

Table 5.2 Configuration of the slave node directory provider

Property name Description

directory_provider org.hibernate.search.store.FSSlaveDirectoryProvider
Directory provider implementation. While you can use a different implementation in
unconventional scenarios, FSSlaveDirectoryProvider is the recom-
mended provider.

indexBase Root directory of the index directory working copy.

indexName Directory name of the working copy index. Defaults to the index name. This value
is used in conjunction with indexBase.

sourceBase Root directory of the index directory source. Typically a shared filesystem.

source Directory name of the source index. Defaults to the index name. This value is used
in conjunction with sourceBase.

refresh The source index directory is copied to the working directory every refresh sec-
onds. The default value is one hour (3600 seconds).

Listing 5.5 Configure indexBase and sourceBase for all indexes

124 CHAPTER 5 Indexing: where, how, what, and when
source directory location where the master is copied to
hibernate.search.default.sourceBase
➥ /mnt/sourcevolume/lucenedirs

In this example, both master and slave share the index content in /mnt/sourcevol-
ume/lucenedirs. sourceBase is identical in both configurations and points to the
same physical storage. The refresh period is also identical. While it’s not necessary to
make these settings the same, it’s usually a good practice unless you have specific rea-
sons not to.

We know you may need to implement custom directory providers to accommodate
particular situations. Hibernate Search is flexible and lets you use your own imple-
mentation and logic.

5.1.5 Writing you own directory provider

There may be a time when the Hibernate Search built-in directory providers are insuf-
ficient for your needs. It might be because you need to tweak things a bit, because you
have written a custom Lucene Directory, or because you want to reuse a JBoss Cache,
Terracotta, or GigaSpace Lucene directory. Hibernate Search lets you write your own
custom DirectoryProvider. The DirectoryProvider implementation benefits from
the same configuration infrastructure available for built-in directory providers. The
list of properties matching the current index name is passed to the initialize

The truth and nothing but the truth?
The copy operations are slightly more complex than depicted previously. It would be
dangerous to copy the value of one index directory into another one while the index
is in use. The source directory contains two versions of the index: the active version,
from which slaves copy the information, and the passive version, into which the
master copies the new version. Hibernate Search copies the master to the shared
source when no operations are at stake. A future version of Hibernate Search will
probably use the Lucene snapshot feature to copy indexes while indexing operations
are still running.

Slaves copy the index from the active source. Copies are done asynchronously from
the main operations. When the copy is finished, the newly copied directory becomes
the active directory. Don’t worry; everything is taken care of for you by Hibernate
Search.

An index can be quite big. Copying the entire index all the time would be quite ineffi-
cient. Hibernate Search tries to do a better job and copies only the incremental
changes. You can think of it as a poor version of rsync. A file is copied only if it has
changed since the last copy. The first time you copy the index or when a huge Lucene
optimization has been executed, the copy will be total and slower. The subsequent
copies will be lighter and thus faster.

125Analyzers: doors to flexibility
method. The property names are unqualified: Default properties or index-specific
properties are merged and passed to the initialize method.

 Writing a DirectoryProvider might require some knowledge of Lucene. An
example of a directory provider is in section 11.3.

 Once you know where your index structure will go, the questions in your agenda
are, what happens during indexing? Can you influence it? Can you tweak it? We’ll
cover this in the next section.

5.2 Analyzers: doors to flexibility
Analyzers are one of those things in Lucene that people tend to “leave for later.” Some
people even tend to see them as some dark magic and haunted artifacts. While we
cannot deny some dark magic things happen in some analyzers, they’re not that com-
plex. And they are indeed very useful and definitely worth the effort to learn about
them. Some of them are fascinating in that they reflect the complexity of our lan-
guages. Before diving into the dark magic, let’s see what an analyzer does.

5.2.1 What’s the job of an analyzer?

Analyzers are basically responsible for taking text as input, breaking it into individual
words (called tokens in Lucene terminology), and optionally applying some operations
on the tokens. We’ll call these operations filters, but they do more than filter in the
common sense of the word: A filter operation can alter the stream of tokens as it
pleases. Said otherwise, it can remove, change, and add words.

 Once the filter centrifuge is finished, Lucene uses the list of words (a stream
really). Each word is indexed, along with statistical information.
TOKENIZING: SPLITTING TEXT INTO WORDS

The first step of an analyzer is to take a stream of characters (text in human terminol-
ogy) and return a stream of tokens (a list of words in human terminology).

 This looks like a piece of cake: We take the text and split it each time we find a
space, a dot, or a comma (basically at every nonletter or number character), and we’re
good! This approach might work most of the time in classic Latin-based languages,
but we’ll reach some harder problems pretty fast:

■ Hyphenation A dash is not always a word separator, especially in texts extracted
from newspapers (because of thin columns).

■ URLs, acronyms, and other particular groupings A dot is not a word separator.
■ Elision (in languages like French, Dutch, Italian, Portuguese, and Spanish) The last

vowel of a word might be suppressed when the following word starts with a
vowel. An apostrophe separates the two words: l’avion (the plane) should be
considered as two words (literally le avion). Sometimes an apostrophe should be
considered as a single word: aujourd’hui (today). In case you didn’t know, every
rule of French grammar has an exception (except this one, maybe).

126 CHAPTER 5 Indexing: where, how, what, and when
If we start to consider non-Latin languages, things get even worse. Some languages
don’t even have a clear notion of words. Chinese and Japanese, for example, do not
separate words with a space. As a matter of fact, traditional Chinese does not have a
word to designate the idea of word as an identifiable graphical unit.

Depending on the targeted language, a tokenizer algorithm might be more accurate
than another type of algorithm.
FILTERING: OPTIMIZING THE INDEXING CONTENT

Assuming we have a stream of tokens from a text, some additional operations can (or
even should) be applied. Some words are so common that it would be best not to
index them. They should literally be filtered out. In most cases, accentuation and case
are not discriminant in searching and should be removed before indexing. Filters can
add, modify, or remove any token in the token stream to optimize the final content
indexed by Lucene. You could think of filters as a bunch of interceptors, each one
handling a specific operation on the token stream.
WHERE TO FIND ALL THESE ANALYZERS AND HOW TO USE THEM

Lucene comes bundled with some basic analyzers, tokenizers, and filters. The contri-
bution part of Lucene (which you can find in the Lucene distribution) provides many
additional analyzers, tokenizers, and filters. Finally, Apache Solr comes with a nice
analyzer configuration framework that Hibernate Search reuses. Make sure to add
solr-core.jar and solr-common.jar to your classpath. You can find these JARs in the
Hibernate Search distribution, in the Solr distribution, or in a Maven repository (such
as the JBoss repository at http://repository.jboss.org/maven2). The authors recom-
mend using the JARs provided in the Hibernate Search distribution to avoid any ver-
sion conflict.

TIP If you use @AnalyzerDef, you must add solr-core.jar and solr-common.jar
to your classpath.

Since when is a word a word?
The idea of words is not as old as you might think. The grammar experts of ancient
Greece and Rome didn’t manage to clearly define the notion of words, and continu-
ous script was the norm. Continuous script consisted of not having any space be-
tween words: thisisanexampleofcontinuousscriptwhilereadableitsquitehardtofindin-
formationquicklyinsuchaflow. Continuous scripting was good enough at that time be-
cause most reading was done aloud.

The idea of adding word breaks was driven by the need for quick reference searching,
by the need to read in a foreign language in the Middle Ages (reading in Latin, which
was no longer the common language, was quite difficult in continuous script), and by
the need to move away from reading aloud.

For more information, you can read Space between Words: The Origins of Silent Read-
ing, by Paul Saenger.

http://repository.jboss.org/maven2

127Analyzers: doors to flexibility
We’ll explore some of these resources in the rest of this section, but don’t hesitate to
browse the Lucene and Solr source code and documentation.

 Once you’ve found the analyzer, tokenizer, or filter of your dreams, you can apply
it globally, per entity, or per property, as shown in section 3.4.1. However, we haven’t
shown how to specify an analyzer definition and its associated tokenizer and filters. All
this can be defined using the @AnalyzerDef or @AnalyzerDefs annotation. Listing 5.6
gives us an example. An analyzer definition (@AnalyzerDef) makes it very easy to
assemble tokenizers and filters; it lets you declare a TokenizerFactory and a list of
TokenFilterFactorys adapted to your needs.

@Entity @Indexed
@AnalyzerDef(
 name="applicationanalyzer",
 tokenizer =
 @TokenizerDef(factory = StandardTokenizerFactory.class),
 filters = {
 @TokenFilterDef(factory=LowerCaseFilterFactory.class),
 @TokenFilterDef(factory = StopFilterFactory.class,
 params = {
 @Parameter(name="words",
 value=
➥"com/manning/hsia/dvdstore/stopwords.txt"),
 @Parameter(name="ignoreCase", value="true")
 })
})
@Analyzer(definition="applicationanalyzer")
public class Item {
 ...
}

An analyzer definition is referenced by a name. An analyzer definition can be refer-
enced by name on any @Analyzer.definition or even the global analyzer definition
(defined by hibernate.search.analyzer), regardless of where it has been defined
(in the same or different class). Each analyzer definition receives a TokenizerFactory
described by @TokenizerDef and a list of TokenFilterFactorys described by @Token-
FilterDef. Each TokenizerFactory or TokenFilterFactory can receive a set of
parameters (a key/value pair) passed thanks to the @Parameter annotation. This
sounds a bit theoretical right now, but don’t worry. The next few sections give practi-
cal examples.

 Solr comes bundled with a huge variety of factories, most of them building and
configuring tokenizers and filters from the Lucene distribution. If you don’t find the
factory for a given tokenizer or filter class, don’t hesitate to implement your own; it’s
as simple as implementing org.apache.solr.analysis.TokenizerFactory for a
tokenizer or org.apache.solr.analysis.TokenFilterFactory for a filter. Finally, if
you have a specific tokenizer or filter requirement, you can implement your own. This

Listing 5.6 An analyzer definition can be used anywhere in the domain model

Analyzer
definition
name Tokenizer factory

Filter
factory

Parameters passed to
the filter factory

Use a predefined
analyzer

mailto:@Analyzer.definition

128 CHAPTER 5 Indexing: where, how, what, and when
is a fairly advanced topic that we won’t cover in this book. The authors recommend
that you study the source code of existing implementations and read Lucene in Action
from Manning.

 A couple of analyzers, tokenizers, and filters fulfill essential services, so you must
be aware of them. We’ll discuss these in the next section.

5.2.2 Must-have analyzers

The most useful and basic analyzer you should be aware of is StandardAnalyzer: This
is the default analyzer in Hibernate Search, and it does a decent job for a number of
European languages even though it’s primarily targeted at English. This analyzer is
composed of the following:

■ StandardTokenizer
■ StandardFilter
■ LowerCaseFilter
■ StopFilter

StandardTokenizer should support most needs for English (and most European lan-
guage) texts. It splits words at punctuation characters and removes punctuation marks
with a couple of exception rules (see the Javadoc for more information). You can use
the StandardTokenizer through the StandardTokenizerFactory provided by the
Solr integration.

 The StandardFilter removes apostrophes and removes dots in acronyms. Solr
provides a StandardFilterFactory that you can use in an analyzer definition to use
the StandardFilter.

 The LowerCaseFilter changes all characters to lowercase. Solr provides a Lower-
CaseFilterFactory. If you plan to index Russian or Greek, be sure to check the lan-
guage-specific analyzer in the Lucene contrib package at org.apache.lucene.
analysis. Russian and Greek need a specific lowercase filter (because of their special
alphabets).

 The StopFilter eliminates some commonly used words. Words very common in a
language (like a, the, and is in English) are usually not relevant to the search and
dilute the results. They are sometimes called noise words and are usually filtered out.
By default, StopFilter will remove commonly used English words, but you can pass a
specific stop word file, which contains one word per line. You can also ask the stop fil-
ter to ignore case, but we recommend that you apply a true LowerCaseFilter before
using StopFilter. Listing 5.7 is an example of an analyzer using StopFilter.

@AnalyzerDef(
 name="applicationanalyzer",
 tokenizer =
 @TokenizerDef(factory = StandardTokenizerFactory.class),
 filters = {
 ...,

Listing 5.7 A StopFilter uses a stop list file and ignores case

129Analyzers: doors to flexibility
 @TokenFilterDef(factory = StopFilterFactory.class,
 params = {
 @Parameter(name="words",
 value=
 ➥"com/maning/hsia/dvdstore/stopwords.txt"),
 @Parameter(name="ignoreCase", value="true")
 })
})

TIP If you don’t specify a list of stop words, Lucene uses its own predefined
list that’s suited to the English language. The list is a, an, and, are, as, at,
be, but, by, for, if, in, into, is, it, no, not, of, on, or, such, that, the, their, then,
there, these, they, this, to, was, will, and with.

Even if you plan to index texts in English, take a deep look at this list.
None of these words will be present in the Lucene index. If you plan to
index numerous documents discussing countries and their differences, of
in Republic of China might be useful. Start with the list provided by Lucene
and adjust it to your needs.

Remember that applying filters normalizes the data and is an essential process. The
filtered words (token) will be indexed as is by Lucene. If you don’t apply the lowercase
filter, for example, your search will be case sensitive.

 Listing 5.8 shows the analyzer definition corresponding to the use of Standard-
Analyzer.

@AnalyzerDef(name="standardanalyzer",
 tokenizer =
 @TokenizerDef(factory = StandardTokenizerFactory.class),
 filters = {
 @TokenFilterDef(factory = StandardFilterFactory.class),
 @TokenFilterDef(factory = LowerCaseFilterFactory.class),
 @TokenFilterDef(factory = StopFilterFactory.class) })

NOTE Filters in @AnalyzerDef annotations are applied in their declared order.
In listing 5.8, StandardFilter is applied before LowerCaseFilter, which
is applied before StopFilter.

This is a lot of theory! Let’s take a sentence and see what happens step by step when
the standard analyzer is used. Listing 5.9 walks us through the process.

#original sentence
During this lovely day, the waiter told me: Look, a plane!

#after the StandardTokenizer
During|this|lovely|day|the|waiter|told|me|Look|a|plane|

#after StandardFilterFactory
During|this|lovely|day|the|waiter|told|me|Look|a|plane|

Listing 5.8 Analyzer definition equivalent to StandardAnalyzer

Listing 5.9 A sentence processed step by step by the standard analyzer

Stop word
factory

File containing
stop words

Purposely
ignore case

Tokenize the
sentence

B

Filter
apostrophe
and so on

C

130 CHAPTER 5 Indexing: where, how, what, and when
#after LowerCaseFilter
during|this|lovely|day|the|waiter|told|me|look|a|plane|

#after StopFilter
during|lovely|day|waiter|told|me|look|plane|

We first split the phrase into individual tokens B. The next step is silent for our par-
ticular sentence C. Then all cases are removed, D then noise words are identified
and removed E.

 If you want to index accented content such as texts in Spanish or French, a filter is
available to replace accented letters by their nonaccented equivalent. Use
ISOLatin1AccentFilterFactory to enable this filter.

 These will be the most useful tools for you on a daily basis. If you target non-Eng-
lish languages, we encourage you to go to Lucene Contrib and check the source code
of your target language analyzer. You’ll learn some interesting information there. For
example, the French package contains an ElisionFilter.

 The basic analyzers, tokenizers, and filters work well for lots of projects. But in
some cases, you’ll need better and more appropriate solutions:

■ Approximative search
■ Phonetic search
■ Search by synonyms
■ Search by word family

Let’s explore some of the coolest features of Lucene!

5.2.3 Indexing to cope with approximative search

One way to cope with typos or wrong orthography (either in the indexed text or in the
query provided by the user) is to make use of FuzzyQuery. This system doesn’t require
any special processing at indexing time. It computes the Levenshtein distance (edit
distance) and takes this value into account when retrieving matching documents. All
the work is done when the query is executed. We’ll discuss fuzzy searching in more
detail in sections 7.1.4 and 7.3.5.

 Another strategy consists of preparing the index structure to best serve an approx-
imation query. In most cases, a typo or wrong orthography alters a word in one or two
places. Part of the word, however, is correct. The user might have the beginning, the
end, or the middle of the word right. The n-gram algorithm is based on this idea.

 An n-gram is a sequence of n consecutive characters in a word. The list of trigrams
(3-grams) for the word hibernate is hib, ibe, ber, ern, nat, and ate (see figure 5.3). Instead
of indexing the whole word, an n-gram tokenizer or filter will index each available n-
gram for a given word. When the query is built, the same process is applied to the
query terms.

 Let’s imagine a query where a user is looking for ybernat. The query will look like
ybe OR ber OR ern OR nat. Some of the n-grams match the Hibernate n-grams, and the
matching document will be picked up. The more n-grams an element matches, the

Lowercase
words

D

Remove stop
words

E

131Analyzers: doors to flexibility
higher the ranking will be. The higher n is, the better the precision is (that is, there
will be few false positives) but the less likely multiple typos will be recoverable.

 The Contrib part of Lucene contains an NGramTokenFilter. Solr has the corre-
sponding NGramFilterFactory. This factory accepts two parameters: minGramSize
and maxGramSize. The filter will build all n-grams where n varies from minGramSize to
maxGramSize. Setting minGramSize and maxGramSize to 3 is a good default.

5.2.4 Searching by phonetic approximation

An alternative technique to the approximation problem, besides using a fuzzy query
or n-grams as discussed in the previous section, is to use a phonetic approach. Despite
the widespread reliance on the internet, text messaging, and other text media, we still
live in a world where oral communication is an important part of our life.

 A couple of algorithms reduce a word to its phonetic equivalent. When two words
are phonetically equivalent (same phonetic reduction), they’re likely to be the same
word separated by a few typos.

 Most phonetic algorithms are based on phonetic rules that eliminate nondiscrimi-
nant letters and encode the remaining ones. The most elaborate of these algorithms
use contextual information before reducing a letter to a sound. Unfortunately, most
of them are focused on the English language.

 When you add Solr analyzers (provided in the Hibernate Search distribution) and
Apache Commons Codec (in version 1.3 at the time this book was written; available at
http://www.apache.org) to your class path, Hibernate Search provides access to four
algorithms:

■ Soundex—The most widely known and one of the oldest phonetic algorithm for
English texts.

■ RefinedSoundex—A variation of Soundex more focused on spell checking.
■ Metaphone—Provides a variable-length phonetic representation of a word. This

algorithm was developed by Lawrence Philips to fix deficiencies in Soundex. It
uses a larger set of rules than Soundex.

■ DoubleMetaphone—An enhancement of the Metaphone algorithm developed by
Lawrence Philips. This algorithm handles more irregularities, including those
in such languages as English, German, Greek, French, and Chinese.

Figure 5.3 Applying an n-gram filter to the
words helps you find approximate matches.

http://www.apache.org

132 CHAPTER 5 Indexing: where, how, what, and when
Let’s imagine you listen to the radio in your car and hear about this fantastic DVD
based on a novel by Victor Hugo. How do you spell this damn French word? It must be
Lay Meeserable from what the speaker said. Close, but not quite. The proper title is Les
Misérables. By using the DoubleMetaphone algorithm, both interpretations are
reduced to “LS MSRP.” Be sure to apply the same algorithm on both the indexed and
the query terms. These algorithms are very useful in conjunction with a fuzzy search
(which computes the distance or similarity between two strings.) The index contains
the phonetic reduction of the words and enables phonetic-based searches.

TIP Index properties make use of approximation analyzers in dedicated
fields. The flexibility of the queries you will be able to write will be greatly
enhanced (see section 5.2.7).

Listing 5.10 shows the use of the PhoneticFilterFactory to do a phonetic reduction
of the indexed tokens.

@AnalyzerDef(name="phonetic",
 tokenizer =
 @TokenizerDef(factory = StandardTokenizerFactory.class),
 filters = {
 @TokenFilterDef(factory = StandardFilterFactory.class),
 @TokenFilterDef(factory = StopFilterFactory.class,
 params = @Parameter(name="words", value="stopwords.txt")),
 @TokenFilterDef(factory = PhoneticFilterFactory.class,
 params = {
 @Parameter(name="encoder", value="DoubleMetaphone"),
 @Parameter(name="inject", value="false")
 })
})

The phonetic filter is activated B (make sure you add solr-core.jar, solr-common.jar,
and commons-codec.jar to your classpath). By defining the encoding parameter C,
you can select the appropriate phonetic algorithm from Soundex, RefinedSoundex,
Metaphone, and DoubleMetaphone. The inject parameter D (defaults to true) speci-
fies whether to add the original token value and the phonetic reduction or simply the
phonetic reduction (as shown in the example) to the token stream. The authors rec-
ommend that you set this parameter to false and index the nonphonetic word in a dif-
ferent field. While this takes more time when indexing, it also provides more
flexibility at query time.

 Which algorithm should you chose? There is no definitive answer; the best solu-
tion is to test each algorithm on your data set and check the pertinence of the results.
Don’t forget to involve your users in the test; their feedback will be invaluable for
building a set of test data.

Listing 5.10 Using a filter to do phonetic reduction of indexed tokens

BEnable the
phonetic filter

D
Don’t inject the

original word
Define the

encoder
strategy C

133Analyzers: doors to flexibility
5.2.5 Searching by synonyms

Several approaches to searching by synonyms are
possible; one of them is to anticipate the problem at
indexing time. Instead of simply indexing a word,
you index the word as well as all its synonyms in
Lucene (see figure 5.4). A query using any of the
synonyms will then match the document. Lucene
acts as if someone had put in every possible synonym
each time a given word is present in a phrase.

 A slightly different approach is to replace a given word by its reference synonym;
all synonyms share the same reference word (see figure 5.5). By applying the same
operation in the query, Lucene will be able to find all synonyms as if they were a sin-
gle word.

Hibernate Search lets you use either of these strategies.

NOTE The first strategy (adding all the synonyms to the index) involves only
index time changes. You should take care to not apply the same analyzer
at query time. This analyzer breaks the golden rule, which is to always
apply the same analyzer at index and query time (see section 7.2.4 for
more information).

Be aware that the second strategy can affect the scoring of your results (the Solr docu-
mentation on SynonymFilterFactory has some information about the impacts of
such a choice).

 You could use a generic synonym dictionary as input, but a lot of synonym rules are
business tainted. You’ll probably enhance the accuracy of your search engine if you
build a synonym dictionary specific to your domain and business.

 Synonym processing is available as a filter. SynonymFilterFactory accepts three
parameters:

■ ignoreCase—Ignore case when processing the tokens. The default is false.

Figure 5.4 A word is indexed with
all its synonyms. A filter adds all the
synonyms to the stream of tokens.

Figure 5.5 A word is replaced by its reference synonym at both index time and
query time.

134 CHAPTER 5 Indexing: where, how, what, and when
■ expand—If true, replace a token with several tokens (one for each synonym) in
the token stream. If false, replace a token with its primary synonym. The default
is true.

■ synonyms—The resource name of the synonym file (for example, com/acme/
synonyms.txt).

The synonym file format is best explained by the Solr reference documentation itself.
Listing 5.11 is a small excerpt of this documentation.

blank lines and lines starting with pound are comments.

#Explicit mappings match any token sequence on the LHS of "=>"
#and replace with all alternatives on the RHS. These types of mappings
#ignore the expand parameter in the schema.
#Examples:
i-pod, i pod => ipod,
sea biscuit, sea biscit => seabiscuit

#Equivalent synonyms may be separated with commas and give
#no explicit mapping. In this case the mapping behavior will
#be taken from the expand parameter in the schema. This allows
#the same synonym file to be used in different synonym handling strategies.
#Examples:
ipod, i-pod, i pod
foozball , foosball
universe , cosmos

If expand==true, "ipod, i-pod, i pod" is equivalent to the explicit mapping:
ipod, i-pod, i pod => ipod, i-pod, i pod
If expand==false, "ipod, i-pod, i pod" is equivalent to the explicit

mapping:
ipod, i-pod, i pod => ipod

#multiple synonym mapping entries are merged.
foo => foo bar
foo => baz
#is equivalent to
foo => foo bar, baz

Check the complete Solr documentation for more information.
 While synonyms do merge words with different meanings, this technique does not

do an efficient job at considering persist and persistent, for example, which are words
from the same root.

5.2.6 Searching by words from the same root

If we were performing a query for the term craftsmen, would we also want documents
returned that contained terms like crafted, craftier, craftily, crafts, craft, or crafty? More
than likely we would, but based on what we’ve discussed so far, this would not happen.
That’s where stemmers come in handy.

Listing 5.11 Synonym file format as understood by the Solr filter

135Analyzers: doors to flexibility
In 1979, Martin Porter designed an algorithm for reducing words to their root by
removing their suffixes. This became known as the Porter stemming algorithm. The
Porter stemming algorithm website is http://tartarus.org/~martin/PorterStemmer/
index.html, and it has a link to the original algorithm paper along with links to the
algorithm written in 22 programming languages, including Java, Perl, Ruby, C#, and
even ERLANG.

 In the first phase, rules are applied as in table 5.3.
 Remember that these rules are applied in sequence. That’s why the SS rule is

applied before the S rule. If the rules were not applied in that order, the S rule could
change things in a way that we would not want it to. The application of later rules
deals with the length of the word to ensure that the matching portion is indeed a suf-
fix and not so much a part of the word that it would lose its meaning if the supposed
suffix were removed. For example, take the words abatement and cement. If we remove
the suffix ment from them, we’re left with abate and ce. Clearly, cement has lost its mean-
ing and would not be stemmed.

 The Lucene project has links to the Snowball stemming language, also developed
by Porter. It’s named in honor of the early (circa 1960s) string-manipulation program-
ming language SNOBOL and is located at http://snowball.tartarus.org. Snowball is
not just for the English language. The website has discussions of the algorithm in
more than 15 languages, and it would be good for you to get involved if your native
language is not listed there. Also, in the Contribution section, Lucene includes classes
that perform the stemming functions along with a precompiled .jar file that can easily

Table 5.3 The first rule set in the sequential process of stemming a word

Rule Example

SSES -> SS Caresses -> Caress

IES -> I Ponies -> Poni

SS -> SS Caress -> Caress

S -> Cats -> Cat

A little bit of history
While the Porter stemming algorithm is the best-known stemming algorithm in the Lu-
cene community thanks to the widespread usage of the Snowball language written by
Dr. Porter, it isn’t the first. The first-published stemming algorithm was the Lovins
stemming algorithm by Julie Beth Lovins in 1968. See http://snowball.tartarus.org/
algorithms/lovins/stemmer.html for some additional information.

The Google search engine started using stemming technology in 2003.

http://snowball.tartarus.org/
http://tartarus.org/~martin/PorterStemmer/
http://snowball.tartarus.org

136 CHAPTER 5 Indexing: where, how, what, and when
be added to your application library. The JAR is located at lucene_install_directory/
contrib/snowball/lucene-snowball-*.jar. A SnowballPorterFilterFactory is available
in Solr.

 Let’s see how to use the stemmer analyzer (listing 5.12).

@Entity @Indexed
@AnalyzerDef(
 name="englishSnowball",
 tokenizer =
 @TokenizerDef(factory = StandardTokenizerFactory.class),
 filters = {
 @TokenFilterDef(factory=StandardFilterFactory.class),
 @TokenFilterDef(factory=LowerCaseFilterFactory.class),
 @TokenFilterDef(factory = StopFilterFactory.class,
 params = @Parameter(name="words",
 value="com/manning/hsia/dvdstore
 ➥ /stopwords.txt")),
 @TokenFilterDef(
 factory = SnowballPorterFilterFactory.class,
 params = @Parameter(name="language",
 value="English"))
})
public class Item {
 @Fields({
 @Field(name="title"),
 @Field(name="title_stemmer",
 analyzer=@Analyzer(definition="englishSnowball"))
 })
 private String title;
 ...
}

Hibernate Search uses the SnowballPorterFilterFactory B when indexing. It
defines the language targeted C (Danish, Dutch, English, Finnish, French, German,
German2, Italian, Kp, Lovins (the first published stemming algorithm), Norwegian,
Porter (original implementation of the Porter Stemming algorithm), Portuguese,
Russian, Spanish, or Swedish). The default is English.

 Listing 5.13 is an example of how to employ the Snowball analyzer to stem words
during both the index build phase and the query phase. Don’t focus here on how to
write a query; we’ll come to it in chapters 6 and 7.

//ensure stemming works accordingly
public String checkStemmingIndex() {
 FullTextSession ftSession = SessionHolder.getFullTextSession();
 try {
 SearchFactory searchFactory = ftSession.getSearchFactory();
 Analyzer entityScopedAnalyzer =
 searchFactory.getAnalyzer(Item.class);

Listing 5.12 Configure the Snowball filter for English

Listing 5.13 Results of stemming both index and query terms

Use the
Snowball filter

B

Define the
languageC

title_stemmer uses
the Snowball filter

137Analyzers: doors to flexibility
 QueryParser parser =
 ➥new QueryParser("id", entityScopedAnalyzer);

 //search on the exact field
 Query query = parser.parse("title:saving");

 if (! "title:saving".equals(query.toString())) {
 return "searching the exact field should not alter the query";
 }

 org.hibernate.search.FullTextQuery hibQuery =
 ftSession.createFullTextQuery(query, Item.class);
 @SuppressWarnings("unchecked")
 List<Item> results = hibQuery.list();

 //we find a single matching result
 int exactResultSize = results.size();
 if (exactResultSize != 1) {
 return "exact match should only return 1 result";
 }

 query = parser.parse("title_stemmer:saving");

 if (! "title_stemmer:save".equals(query.toString())) {
 return "searching the stemmer field should search the stem";
 }

 //return matching results
 hibQuery = ftSession.createFullTextQuery(query);
 results = hibQuery.list();

 if (results.size() <= exactResultSize) {
 return "stemming should return more matches";
 }
 return null; //no error
 }
 catch (ParseException e) {
 throw new SearchException(e);
 }
}

When using the entity scoped analyzer provided by the Hibernate Search Session-
Factory, B the same analyzer will be used both at index time and search time, gener-
ating the same tokens. When searching the field using the englishSnowball analyzer,
the query is rewritten by Lucene to search the stemmed version of each word (match-
ing the token stored in the index)C.

 Be sure to use the same analyzer during indexing and in preparing your queries
because the terms need to be reduced in the same way. In listing 5.13, checkStem-
mingIndex() returns null; more results are returned when the stemmer analyzer is
used.

TIP To use the same analyzer at indexing and querying time, retrieve it from
fullTextSession.getSearchFactory().getAnalyzer(Targeted-
Entity.class). See Section 7.2.

Use Item
analyzer

B

Build Lucene query

Search the
exact word

Return
matching
results

Search same
word on the
stemmed field

C
Search the stem

version of each word

More matching
results are
found

138 CHAPTER 5 Indexing: where, how, what, and when
Figure 5.6 shows Luke examining the generated index. Notice that even though we
indexed two different words (saving, save), the index of the title_stemmer field con-
tains only one term, save.

 When you are playing the wizard with analyzers, always keep an eye on Luke. This
will save you a lot of time.

Figure 5.6 Luke is used to examine the index created from saving and save and
shows that the index contains only one term, save.

What about relevance?
How does this stemming process affect relevance? After all, we’ve reduced the num-
ber of terms indexed, as shown in figure 5.6, which should lead to an increase in
search efficiency. At the same time we’ve reduced query terms to their lowest com-
mon denominator, which will result in more hits.

As it turns out, stemming as opposed to using a nonstemmed system is looked at
as a Recall enhancer. Stemming causes the number of both retrieved and relevant
documents to increase, but the retrieved count increases at a higher rate than the
relevant count. If you examine the relevance equations in chapter 12 (sections 12.34
and 12.35), you’ll see that Precision suffers as the number of retrieved documents
(the Precision denominator) increases. At the same time, Recall increases since the
count of retrieved documents (the Recall denominator) increases faster than the total
number of relevant documents (the Recall numerator).

If you don’t understand this right now, it’s not an issue; you will as soon as you read
chapter 12.

139Transparent indexing
That’s just about as deep into the stemming process as we wish to go. We hope you
enjoyed diving into the tricky little details of languages as much as we did. But when
should you apply all those techniques?

5.2.7 Choosing a technique

Should you use all these techniques? All at once? No. Hibernate Search provides easy
access to these tools. Some of them are competing in the same space (n-gram, pho-
netic approximation). Check what’s best for your search engine by building fast proto-
types. Don’t forget that the more complex an analyzer, the longer indexing will take.
Sometimes the simplest solutions do marvels.

 The authors recommend that you use approximation analyzers in dedicated fields.
For example, listing 5.14 uses the classic analyzer as a default to index a property and
uses the n-gram analyzer on a secondary field to index the same property.

@Fields({
 @Field(index=Index.TOKENIZED),
 @Field(name="title_ngram",
 index=Index.TOKENIZED,
 analyzer=@Analyzer(definition="ngramanalyzer")
})
private String title;

The interesting part of this approach is the ability to do searches in layers, expanding
the approximation level each time. The search engine applies different sets of rules
ranging from very strict to very loose in layers. If the search is specific enough, the
strict search will find sufficient information; if the search terms are somewhat fuzzy, a
query using the approximation fields will provide better results. The search engine
can execute the strict query first, and if more data is required, it can execute a second
query using approximation techniques, and so on. Once the search engine has
retrieved enough information, it bypasses the next layers (see section 6.4.3 for more
information). Remember that a Lucene query is quite cheap. Running several Lucene
queries per user query is perfectly acceptable.

 We’ve answered the question of how to index. Isn’t it marvelous to see the Lucene
flexibility in action and how it copes with the complexity of our language(s)? As we
promised, analyzers are not that difficult to use and open a lot of possibilities. Of
course, analyzing means nothing if you don’t know when to index your data and
which part of your data needs indexing.

5.3 Transparent indexing
One of the main burdens of using naked Lucene is trying to decide which data has
changed and needs reindexing and when to index the changing data. Keeping track
of the changed data set is a problem in itself, but indexing this data efficiently is

Listing 5.14 Using approximation analyzers in dedicated fields

140 CHAPTER 5 Indexing: where, how, what, and when
arguably a bigger challenge that traditionally requires writing infrastructure code on
top of Lucene.

 Thankfully, Hibernate Search does all this hard work for you.

5.3.1 Capturing which data has changed

Hibernate Search has the ability to capture every change made by Hibernate Core.
When an entity is created, updated, or deleted, or when a collection is changed,
Hibernate Search determines which index documents need to be either created or
deleted.

NOTE A LUCENE DOCUMENT IS READ-ONLY While a Lucene index (a collection
of documents) can be updated, each individual document (representing
an entity entry) is read-only. When a change is made on an entity, the
Lucene document must be deleted and a new document created. In this
book, updating a document should be understood as deleting and creat-
ing a document.

Capturing changes becomes a cross-cutting concern for the application. All changes
applied in the following ways are captured:

■ Through an explicit Hibernate Session or EntityManager call (persist,
remove, merge, and so on).

■ By cascading on an object graph
■ On the domain model and processed at flush time by Hibernate

How can we enable automatic change tracking?
 If you use Hibernate Annotations or Hibernate EntityManager (versions 3.3.1 or

above), Hibernate Search transparently plugs in the necessary event listeners. Noth-
ing is required in the configuration.

NOTE A bug covering change tracking for collections has been solved in Hiber-
nate Search 3.0.1 and Hibernate Core 3.2.6. Be sure to use at least these
versions.

If you use Hibernate Core without Hibernate Annotations, a few extra steps are
required. The event listeners are not transparently registered for you, and you’ll need
to add some properties in your hibernate.cfg.xml file. Listing 5.15 shows such a con-
figuration file.

<hibernate-configuration>
 <session-factory>
 ...
 <event type="post-update">
 <listener

class="org.hibernate.search.event.FullTextIndexEventListener"/>
 </event>

Listing 5.15 Hibernate Core without Hibernate Annotations requires extra steps

141Transparent indexing
 <event type="post-insert">
 <listener

class="org.hibernate.search.event.FullTextIndexEventListener"/>
 </event>
 <event type="post-delete">
 <listener

class="org.hibernate.search.event.FullTextIndexEventListener"/>
 </event>

 <event type="post-collection-recreate">
 <listener

class="org.hibernate.search.event.FullTextIndexEventListener"/>
 </event>
 <event type="post-collection-remove">
 <listener

class="org.hibernate.search.event.FullTextIndexEventListener"/>
 </event>
 <event type="post-collection-update">
 <listener

class="org.hibernate.search.event.FullTextIndexEventListener"/>
 </event>
 </session-factory>
</hibernate-configuration>

WARNING If you use the old Hibernate Search 3.0.x, check listing 2.5 in section
2.2.2 because the configuration is slightly different. The collection-
related events work only on Hibernate Core 3.2.6 and above.

That’s it! While we encourage you to use Hibernate Annotations, the extra steps
required to use plain Hibernate Core are fairly minimal.

 Hibernate Search knows all about the changes that need to be applied to the
Lucene indexes thanks to the event listeners. But when does it apply them? And how?
This is what we will discover now.

5.3.2 Indexing the changed data

Hibernate Search is notified when a change needs to be made to the index. One pos-
sible strategy would have been to apply each change right away. This strategy unfortu-
nately suffers from two main drawbacks:

■ Performance
■ ACID

Applying changes one at a time is fairly inefficient in Lucene: You need to open the
index file(s), apply the changes, flush the changes to the disk, and close the file(s).
However, Lucene is pretty efficient at applying updates in batch.

 The second problem is related to your application workflow. To understand this,
let’s step back a little and examine how ORMs work. An ORM does not execute an
update as soon as your entity changes. That would be fairly inefficient. Instead, it tries
to delay as long as possible the database updates. If everything goes well, all the data-
base changes are applied right before the database commit. Applying changes is

142 CHAPTER 5 Indexing: where, how, what, and when
called flushing. Flushing can happen anytime before commit, in order to keep the
results of queries consistent.

 Let’s imagine for a moment that Hibernate Search indexes changes as soon as
they’re flushed. If the transaction is rolled back, no changes will eventually be per-
sisted to the database but they will to the index. Nobody wants to have stale data in the
query results. We need a solution.

 When a flush triggers a change to an indexed entity or collection, Hibernate
Search adds the change to a queue. This queue is scoped by transaction. During the
commit operation, whether it is triggered explicitly by the application or implicitly
through declarative transaction demarcation, Hibernate Search processes the queue
and applies the changes to the index. The sequence of events is shown in figure 5.7.

 This process has the following benefits:

■ Changes on the index are not applied until the transaction is committed (and
the database persists the changes).

■ All changes are applied at the same time in the indexes.

When a transaction is rolled back, the queue is simply discarded without being pro-
cessed. Not only do the database and the index stay synchronized, but minimal work is
performed until the transaction is committed.

 In most scenarios, your transaction changes will span more than one entity type. If
you use the default Hibernate Search configuration, changes will span more than one
index. By indexing changes when a commit happens rather than when a change hap-
pens, you reduce the amount of input/output necessary for Lucene and the time a
Lucene index is locked, increasing scalability.

Figure 5.7 Hibernate Search queues all changes applied to the database during a flush. During the
commit operation, the queue is processed and the index is updated.

143Transparent indexing
People familiar with Hibernate and Seam know the pattern called conversation. A con-
versation is a series of request-response cycles in which the user ends up with a set of
changes atomically applied to the database. One example is a wizard screen, but now-
adays with the use of AJAX, a lot of operations are conversational in nature. Keeping a
database transaction open during several request-response cycles is usually not an
option, especially when the user decides to go get coffee between two request-
response cycles!

 A common solution to work around this problem is to keep a Hibernate session
open for the duration of the conversation and set the flush mode to manual. In man-
ual mode, the session keeps all the object changes without applying them to the data-
base. The last request-response cycle flushes all changes to the database and
atomically commits. Seam goes even further by letting you describe conversations
declaratively and does the hard work for you.

Are changes made in the indexes transactional?
While changes to a Lucene index can be made transactional, Lucene is not an XA
resource. If we step back and look at the resources involved in the transaction,
we have:

■ The database
■ Several Lucene indexes (one per entity type by default

Hibernate Search doesn’t try very hard to make Lucene look like an XA resource and
apply a two-phase commit (2PC) protocol. Several reasons have driven this choice.

Hibernate Search in its design treats the database as the central container of infor-
mation. The Lucene indexes are considered more like convenient data structures that
enhance the user experience. As a matter of fact, indexes can be entirely rebuilt from
the database. Ensuring transactional integrity for such data structures is not critical.

Lucene and Hibernate Search will enhance the user experience. It would be bad for
the user’s business to grind to a halt if the indexing operations fail. Let’s look at an
example. A website has an order process that registers a customer and an order. Do
we want the order to fail because the indexing process has failed? Or is it preferable
to get the order into the system and deal with the indexing issue later on? In a pure
2PC system, if one resource fails, all resources abort; if Lucene fails to index, the
database aborts the transaction.

The final argument in favor of a loose transactional approach is to allow the indexing
process to be applied asynchronously (either at a different time or on a different serv-
er). The next section discusses the benefits of indexing asynchronism and how it
could be made recoverable.

In brief, Hibernate Search does not make Lucene index XA resources, and this was
done on purpose.

144 CHAPTER 5 Indexing: where, how, what, and when
 How does Hibernate Search play in the conversation model? Very well indeed.
Because the Hibernate session delays all changes, Hibernate Search is not even noti-
fied until the last flush operation. From your point of view, Hibernate Search partici-
pates in the conversation.

 Some people apply database changes outside a transaction, usually for obscure,
unjustified, ideological reasons. In this situation, Hibernate Search applies changes to
the index right away because it doesn’t have a context to attach the change queue to.
You should always use database transactions, even for read-only operations; contrary
to popular belief, using a transaction for a series of read-only operations may be faster
than not using an explicit transaction depending on the database engine. Without
explicit transactions, the database has to create one implicit transaction for each read-
only operation.

 One additional benefit of queuing changes per transaction is that the list of
changes can be applied in an asynchronous way, even by another server. We’ll explore
this topic in the next section.

5.3.3 Choosing the right backend

In the previous section, we did not describe what happens when Hibernate Search
applies the changes to the Lucene index. Multiple scenarios are possible.

 The most straightforward solution and the default in Hibernate Search consists of
indexing the changes using Lucene. Lucene directly applies the changes to the
involved index(es) when the commit operation happens. Once indexing is done, the
commit operation is considered complete. The commit operation can be triggered
explicitly by calling the commit method from the Session or the EntityManager if a
JDBC transaction is used (see figure 5.8). It can also be triggered transparently in a
container-managed transaction environment such as EJB, JBoss, Seam, or Spring.

 This solution is sufficient for most cases and ensures that the index is synchro-
nously up to date with the database.

Figure 5.8 By default, Hibernate Search applies changes to the index during the commit
operation in a synchronous way.

145Transparent indexing
A second strategy is possible. In lieu of executing the indexing operations synchro-
nously during commit, a separate thread is spun. The indexing work is delegated to
the thread. Figure 5.9 shows the chain of events.

 This approach minimizes the user response time; the price (in time) spent on
indexing and waiting for input/outputs is not directly paid by the user. It also grace-
fully absorbs heavy writing periods.

 Updating a Lucene index requires a pessimistic lock, which essentially prevents
any other updates from occurring during this period. Applying the changes asynchro-
nously helps smooth the impact of heavy change periods. Hibernate Search lets you
enable asynchronous mode and define the maximum number of threads spun. You
configure these setting though the properties described in table 5.4.

 Defining the buffer queue size is best done through performance testing. The
queue should be high enough to absorb most of your processing peaks but should not
consume too much memory. When the buffer size is reached, subsequent indexing
operations are done in the commit method synchronously. This provides a feedback
loop to your architecture.

 Resource control is a trade-off problem. Should a server accept as many requests as
possible at the risk of replying to these requests in an unreasonable amount of time?
Or should the server decline the requests it cannot handle to keep a decent quality of
service on the accepted ones? Regardless of your answers, limiting the buffer size will
provide the necessary feedback to take action, because the rest of your architecture
will be aware of the indexing overhead.

 Don’t worry too much, and don’t envision doom scenarios right away. Lucene is a
high-performance library that’s known to handle massive charges for well-known web-
sites. Don’t optimize prematurely. Run performance benchmarks, and check the reac-
tions of your architecture. The limiting factor is likely to be elsewhere.

Figure 5.9 Hibernate Search applies changes to the index asynchronously in a different thread to provide faster
response time.

146 CHAPTER 5 Indexing: where, how, what, and when

The strategies we’ve seen so far could be summarized as these:

■ Drop the pen, do the work right away, and call back when the work is done.
■ Continue working on the initial task, keep the additional work in mind, and do

it in parallel.

In both cases, the virtual machine (VM) is still responsible for the work. Finishing the
task right away or saving it for later doesn’t make any difference to the total amount of
work the VM has to do. There’s an even better approach: delegate! Why not ask some-
one else you trust to do the work?

 Hibernate Search can delegate the indexing work to another server. Instead of
processing the change queue right away or spinning a thread to process the change
queue in parallel, Hibernate Search can send the change queue (essentially the work
to be done) to another virtual machine. The default implementation uses Java Mes-
sage Service (JMS). The change queue is sent to a JMS queue. Another instance of
Hibernate Search listens to and processes the JMS queue; this instance is often
referred to as the master. The chain of events on the slave is shown in figure 5.10.

 Delegating the work has several advantages:

■ No resources (time, CPU, IO) are consumed by the VM that processes the main
operations (serving web requests, applying the database changes).

■ The VM processing the main operations is not impacted by the Lucene global
pessimistic lock; the inherent scalability issue of the Lucene design is not prop-
agated to the rest of the application.

Table 5.4 Enabling asynchronous indexing is done through properties.

Property Description

hibernate.worker.execution sync or async: sync will index changes dur-
ing the commit operation synchronously. async
will delegate the work to a dedicated thread.
Default is sync.

hibernate.worker.thread_pool.size Define the number of threads available in the
pool for index purposes. Default is 1.

Unless different transactions are likely to oper-
ate on different indexes, using a pool larger
than 1 will have no significant effect.

hibernate.worker.buffer_queue.max Amount of indexing work queued for processing
by the thread pool. This is essentially the buffer
size. Default is infinite.

Defining a limit is recommended to avoid stack-
ing up unfinished work and potentially experi-
encing OutOfMemoryException problems.

If the queue limit is reached, the indexing work
is processed in the caller’s thread (which will
likely wait for the directory lock).

147Transparent indexing
■ The risk of OutOfMemoryException that asynchronous mode suffers from is no
longer present.

■ This system can be clustered naturally.

This approach has a lot of benefits. However, as in real life, when you delegate, you
like to receive the work done at some point (unless you delegate to your trash bin).
Changes processed by the master need to be propagated to the other Hibernate
Search instances. We previously described one solution for this in this chapter.
Section 5.1.4 offers a way to share a Lucene directory across a cluster without suffering
from Lucene’s global lock scalability difficulties.

 As in many configuration strategies in Hibernate Search, enabling JMS mode is a
matter of adding a few configuration properties:

1 Enable the JMS backend:
hibernate.worker.backend jms

2 (Optional) Define the Java Naming Directory Interface (JNDI) configuration
properties in your Hibernate configuration file using the hiber-

nate.worker.jndi.* prefix or place them in a jndi.properties file.
If you run in an application server where the JMS connection factory and

queue are bound, you won’t need to configure JNDI. Otherwise you might need
to add a jndi.properties file containing something similar to this:
java.naming.factory.initial=org.jnp.interfaces.NamingContextFactory
java.naming.provider.url=localhost:1099
java.naming.factory.url.pkgs=org.jboss.naming:org.jnp.interfaces

Alternatively, if the JNDI properties shouldn’t be shared, you can use the
Hibernate Search properties and add them to your Hibernate configuration
file, like this:

 hibernate.search.worker.jndi.class=
 ➥ org.jnp.interfaces.NamingContextFactory

hibernate.search.worker.jndi.url=localhost:1099
 hibernate.search.worker.jndi.java.naming.factory.url.pkgs=
 ➥ org.jboss.naming:org.jnp.interfaces

Figure 5.10 Hibernate Search sends the information to run the indexing work to a JMS queue.

148 CHAPTER 5 Indexing: where, how, what, and when
The configuration values described are typical for JBoss AS. Refer to your appli-
cation server configuration for more information.

3 Define the JNDI name of JMS connection factory (/ConnectionFactory in
JBoss AS):
hibernate.worker.jms.connection_factory /ConnectionFactory

4 Define the JNDI name of the JMS queue. The JMS queue will receive the Hiber-
nate Search change queues as individual messages.
hibernate.worker.jms.queue queue/hibernatesearch

A typical configuration file will contain the properties described in listing 5.16.

hibernate.worker.backend jms
hibernate.worker.jms.connection_factory /ConnectionFactory
hibernate.worker.jms.queue queue/hibernatesearch

Chapter 10 gives you a better picture of clustered environments and how JMS, the dis-
tributed DirectoryProvider, and Hibernate Search work together to cluster your
search architecture.

 Hibernate Search provides several alternatives to the seasoned architectures. You
can adjust the search indexing operations to the application’s needs. But what if this is
not enough—can we go further? Are we limited to the “genuine” Hibernate Search
architectures? Not at all; Hibernate Search is agnostic to the architecture and offers
lots of extension points.

5.3.4 Extension points: beyond the proposed architectures

Hibernate Search has a pluggable architecture that allows you to change when and
how indexing happens. To understand what can be changed, let’s dive into some of
the architecture’s details and see how it works. Figure 5.11 shows the relationships
between the architecture’s components.

Listing 5.16 Typical configuration properties to enable the JMS backend

Figure 5.11 Sequence of operations from an entity change to its propagation

149Transparent indexing
 The three main systems at play are:

■ Worker—Responsible for receiving all entity changes, queueing them by con-
text, and deciding when a context starts and finishes.

■ QueueingProcessor—Responsible for piling up changes in a given context,
preparing the work for Lucene, and triggering the work either synchronously
or asynchronously.

■ BackEndQueueProcessorFactory—Responsible for providing a Runnable

instance that will perform the list of Lucene changes.

NOTE The APIs described here are semipublic. Although they haven’t changed
since the first Hibernate Search’s final General Availability (GA) release,
they might evolve over time in Hibernate Search if such a need arises.
The Hibernate Search project policy guarantees it won’t break these APIs
inside a given microrelease; for example, all 3.1.x releases will remain
compatible.

Let’s have a closer look at each element.
WORKER: DEFINING THE CONTEXT

By default Hibernate Search keeps track of entity changes per transaction. The piece
of code responsible for collecting the changes and sorting them per transaction is the
TransactionalWorker.

 The Worker is responsible for keeping track of changes per context and for decid-
ing when a context starts and stops. Upon a context stop, the Worker implementation
should perform (usually delegate) the work accumulated in the context. In the
default implementation, when a transaction commits, the Worker prepares the work
(essentially converts the entity changes into Lucene changes) and performs it.

 A Worker implementation must be thread-safe because it is shared for a given
SearchFactory; a SearchFactory has the same lifecycle as a SessionFactory or an
EntityManagerFactory.

 Although the transactional context makes the most sense for a variety of reasons
(because of the definition of transactions and the way ORMs behave), one can envi-
sion a context piling up all concurrent changes and flushing them based on the num-
ber of changes or even a context lifecycle driven by application events.

 Overriding the default context implementation is done through a configuration
property, as shown in listing 5.17. All properties starting with the prefix hiber-
nate.search.worker. are passed to the Worker implementation at initialization time.

org.hibernate.search.worker.scope my.custom.applicationtriggered.WorkerImpl
org.hibernate.search.worker.triggers_before_run 5

Most likely you won’t need to create a custom Worker implementation. The transac-
tion-scoped approach is the most appropriate.

Listing 5.17 Define a custom Worker implementation

150 CHAPTER 5 Indexing: where, how, what, and when
 As the work is collected, it needs to be kept by context. Once the context ends, the
queue of entity changes must be prepared and processed. This is the role of the
QueueingProcessor.
QUEUEINGPROCESSOR: CONVERTING AN ENTITY CHANGE INTO A LUCENE CHANGE

A QueueingProcessor keeps together entity changes for a given context. It fulfills
three functions:

■ Queues all the entity changes for a given context
■ Converts entity changes into Lucene changes
■ Passes the queue of Lucene changes to the BackendQueueProcessorFactory

The process that converts entity change notifications into a list of Lucene Documents
to either delete or add to the indexes involves several actions:

■ Eliminating duplicate change notifications
■ Applying the relevant field bridges for a given entity
■ Processing the associations marked as embedded
■ Determining associated entities containing the processed entities

All this is done by the prepareWorks method; this method is solely responsible for
converting the object to its index representation.

 The QueueingProcessor then passes the Lucene change queue to the Backend-
QueueProcessorFactory either synchronously or asynchronously depending on the
settings (see section 5.3.3 for more information). Note that you cannot override the
default implementation. The preparation code is very specific and subtle, so the need
for a custom implementation is unlikely. If you have this need, bring it up to the
Hibernate Search developers at hibernate-dev@lists.jboss.org.
BACKENDQUEUEPROCESSORFACTORY: GETTING IT OUT OF HIBERNATE SEARCH’S WAY

Now that we have a list of Lucene index changes to apply, we need to apply them. The
most obvious solution is to fire up Lucene and delegate the work to the library. This is
essentially what LuceneBackendQueueProcessor does. The work isn’t as easy as it
sounds, because you need to acquire locks to various Lucene indexes in a way that pre-
vents deadlocks and should take care of Hibernate Search sharding strategies (see sec-
tion 9.4). It’s unlikely that you’ll need to adjust this implementation.

 More surprisingly, LuceneBackendQueueProcessor isn’t the only implementation
Hibernate Search provides. Another implementation named JMSBackendQueuePro-
cessorFactory sends the Lucene change list to a JMS queue instead of processing it
locally. You’ve already started to see some of the benefits of JMS as a distributed model
in section 5.3.3, and you’ll see more in chapter 10.

 Some people, for one reason or another, want to use a different communication
layer than JMS (probably because of the myth that JMS is heavyweight). Implementing
a custom BackendQueueProcessorFactory is the perfect solution for that. A Backend-
QueueProcessorFactory is responsible for returning a Runtime instance that, when
executed, will push the Lucene change list out of Hibernate Search’s responsibility
(either by applying the changes or by delegating the changes to another instance).

mailto:hibernate-dev@lists.jboss.org

151Indexing:when transparency is not enough
 Defining the BackendQueueProcessorFactory implementation to use is one prop-
erty away (see listing 5.18 for an example). Like the Worker implementations, all the
properties prefixed with hibernate.search.worker are passed to the Backend-
QueueProcessorFactory at initialization time.

org.hibernate.search.worker.backend
➥ my.custom.JGroupsBackendQueueProcessorFactory
org.hibernate.search.worker.use_multicast true

The fully qualified class name of the factory is defined in org.hiber-

nate.search.worker.backend.
 This section is in no way comprehensive, but it should give you a good idea of

Hibernate Search’s flexibility and the pieces you can customize. Remember, these APIs
are semipublic. Don’t blame us if you need to tweak them a bit between two major
Hibernate Search releases.

 You probably have noticed that this section is almost free of Java code. No, the
authors have not become lazy. We warned you in the title of this section. Hibernate
Search takes care of all the indexing bookkeeping for your applications. As soon as
Hibernate Core makes a change, Hibernate Search propagates the change to Lucene
transparently.

 But what can you do if you need to index your data manually? What about the
existing data set lying in the database? Should you really wait for an update before
Hibernate Search wakes up and indexes the data? The next section will answer these
questions.

5.4 Indexing:when transparency is not enough
While transparent indexing is easy and covers most cases, you’ll find situations where
your application wants Hibernate Search to explicitly index entities. Transparent
indexing happens when Hibernate Core applies a change to an entity (add, update,
or delete), but at times you’ll want to index when no change happens. The initial
indexing of an existing database is the most obvious and prominent use case, but it
isn’t the only one, as you’ll see later in this section.

 Hibernate Search provides a way to directly ask for manual indexing as part of its
core API.

5.4.1 Manual indexing APIs

When Hibernate Search receives a change event from Hibernate Core, it triggers
either the object indexing to the Lucene index or the object removal from the
Lucene index. Those two primitive operations are available in the FullTextSession
and FullTextEntityManager APIs:

■ index(Object entity)—Index or reindex an entity managed by the session
without triggering any database change.

Listing 5.18 Defining a BackendQueueProcessorFactory implementation

152 CHAPTER 5 Indexing: where, how, what, and when
■ purge(Class entityType, Serializable id)—Remove from the Lucene
index an entity with the given identifier without removing the entity from the
database.

■ purgeAll(Class entityType)—Remove from the Lucene index all entities of
a given type (and all its subclasses) without removing them from the database.

Listing 5.19 shows how to index all objects of a given type. Don’t copy this example
because it suffers a major flaw (see section 5.4.2 for more information). But it should
be good enough if you’re indexing a handful of objects.

tx = session.beginTransaction();

//read the data from the database
Query query = session.createCriteria(Item.class);
List<Object> items = query.list();

for (Object item : items) {
 session.index(item);
}

tx.commit();

The objects to be indexed need to be managed by the session B. Objects to be manu-
ally indexed are added C. The Lucene index is updated during commit (synchro-
nously or asynchronously) D.

 Manually indexing an object is done by passing it to the index method. The entity
must be managed (that is, attached to the session). Typically the list of objects will be
loaded by id or through a query before being passed to the FullTextSession (or
FullTextEntityManager) index method. Another strategy is to reattach the entity
instance by calling lock, saveOrUpdate, or merge.

WARNING Don’t forget that merge doesn’t attach the object but returns a man-
aged copy of the object. The returned value is the one to index.
Object managedCopy = session.merge(detachedEntity);
session.index(managedcopy);

Don’t use listing 5.19 to initially index all entities from the database; you’ll most likely
suffer from OutOfMemoryException. We’ll discuss a better technique in a bit.

 The second main operation (listing 5.20) consists of removing an obsolete entity
from the index without removing the entity from the database.

tx = session.beginTransaction();

for (Integer id : ids) {
 session.purge(Item.class, id);
}

tx.commit();

Listing 5.19 Indexing all objects manually (the naïve approach)

Listing 5.20 Removing objects from the Lucene index

Retrieve entities to
be indexed

B

Mark them for
indexing

C

Indexing work performed at
commit time

D

Mark an entity
for purge

B

Actual purge happens
at commit time

C

153Indexing:when transparency is not enough
Removing an entity from the index does not require the entity instance. B The entity
type and id are sufficient. Changes are applied at commit time C (synchronously or
asynchronously).

 This operation does not require the entity instance; the entity type and its id are
used.

 Sometimes, especially when you want to completely reindex your data (or when
running unit tests), you need to remove all information about a given entity type from
the index. The purgeAll operation does just that. Listing 5.21 demonstrates how to
use the API.

tx = session.beginTransaction()

session.purgeAll(Item.class);

tx.commit();

Remove all entities of type Item from the index B(including the subclasses of Item if
any). Changes are applied at commit time C (synchronously or asynchronously).

 All information about the given entity type and its subclasses will be removed from
the index. Note that it will not erase the Lucene directory but will remove elements
from it.

 After doing massive indexing or purging, it’s a good idea to trigger an optimize
operation. Optimizing the index is very similar to defragmenting a disk. See section 9.3
for more details.

 We recommended that you apply indexing and purging operations in a transac-
tion. If you don’t, Hibernate Search will need to apply changes one by one to the
Lucene indexes, which will be suboptimal to say the least.

 Earlier in this section, we hinted that indexing a lot of information could lead to
OutOfMemoryExceptions. Let’s discuss why and, more important, how to avoid that
(this is an “in Action” book, after all).

5.4.2 Initially indexing a data set

We now have a nice new search engine for our DVD store website and are ready to kick
some butts in the retail market—almost. We have a huge legacy database that knows
all about our DVD catalog, and we need to initially index this catalog. We know that
when we add, change, or remove a DVD from the catalog, Hibernate Search takes care
of keeping the index up to date. But what about the existing data?

 We’ll use the manual indexing APIs we just discovered, but the naïve approach
described in listing 5.19 won’t work. This approach consists of loading all the DVDs
and indexing them. Unfortunately (or on the contrary fortunately) for us, the num-
ber of DVDs is large enough to exceed the VM memory available. We need to read enti-
ties by batch, index them, and remove them from memory before processing the next
batch. An even better approach would be to read entities as a stream, then process
them. As shown in listing 5.22, Hibernate Search offers a solution.

Listing 5.21 Removing all entities for a given type from the index

Remove all index
data for Item

B
Actual removal happens
at commit time

C

154 CHAPTER 5 Indexing: where, how, what, and when

session.setFlushMode(FlushMode.MANUAL);
session.setCacheMode(CacheMode.IGNORE);

tx = session.beginTransaction();

//read the data from the database
//Scrollable results will avoid loading too many objects in memory
ScrollableResults results = session.createCriteria(Item.class)
 .scroll(ScrollMode.FORWARD_ONLY);

int index = 0;
while(results.next()) {
 index++;
 session.index(results.get(0));
 if (index % BATCH_SIZE == 0) {
 session.flushToIndexes();
 session.clear();
 }
}

tx.commit();

B Prevent Hibernate Core from doing unnecessary flush operatons. C Prevent
Hibernate Core from interacting with the second-level cache. Since a lot of entities
are expected to be processed, using a second-level cache would be unproductive. D
Use a forward-only scroll to ensure the JDBC driver does not cache the previously
processed rows. E Apply indexing to the current entity. F On every BATCH_SIZE
operation, apply index changes, freeing the index queue, and clear the session to
free up memory

 By using a forward-only scrollable result set and by clearing the session every nth
operation, we ensure that memory doesn’t leak. Well, almost. Remember that Hiber-
nate Search doesn’t apply the change in the index until commit; rather it keeps track
of the changes and consumes memory. This defeats the whole purpose of using clear.
To work around this problem, Hibernate Search lets you call flushToIndexes(). On
the method call, all index changes are executed (to the backend). By releasing the
index change queue and clearing the session, you ensure that the memory consump-
tion stays under control.

NOTE If you use Hibernate 3.0.x, flushToIndexes() isn’t available. Instead, you
can define a batch size that limits the number of operations queued
before being applied to Lucene. Check listing 5.23 to see how this prop-
erty is configured. Make sure this value equals the batch size in your loop.

the batch size must equal the loop size in your indexing code
hibernate.search.worker.batch_size 1000

Use the same algorithm described in listing 5.22 and simply remove the
call to flushToIndexes().

Listing 5.22 Index entities without suffering from OutOfMemoryException

Listing 5.23 Define the entity job queue batch size (Hibernate Search 3.0)

Disable flush operationsB
Disable 2nd-level
cache operationsC

Ensure forward only
result setD

Index entitiesE

Apply changes to
the index

F

Clear the session,
releasing memory

Apply the remaining
index changes

155Indexing:when transparency is not enough
This solution is inferior and more error prone for these reasons:

■ Batch size in the configuration and in the code must be the same.
■ This limit is applied to all transactions regardless of the use of the manual

indexing.

This is a very good reason to upgrade to the latest version!

If you follow this pattern, you’ll likely ensure fast enough indexing time without risk-
ing OutOfMemoryException.

Indexing all my data is still really slow What’s going on?
It’s hard to give numbers because they vary so much depending on these factors:

■ Size of the data to index
■ Input/output disk performance
■ Database performance
■ Network performance
■ Size of the index directories

Nevertheless, if you think Hibernate Search is way too slow to index your data, some-
thing is wrong. Let’s explore some of the things that could go wrong:

■ The indexing code doesn’t follow the strategy described in listing 5.22; using a
scrollable result set, avoiding interaction with the second-level cache, and clear-
ing the session on a regular basis are critical.

■ flushToIndexes() is not called before clear(); the memory is not released.
■ Hibernate does multiple queries when indexing an object (enable SQL logging to

see what’s going on behind the scene).

Remember that associations embedded in the index and associations marked as
@ContainedIn must be loaded and traversed by Hibernate Search. If your initial que-
ry doesn’t load these associations, Hibernate Search will hit the database to request
them, and you’ll essentially face the infamous n+1 queries problem. You have sev-
eral possible solutions:

■ Write a query that loads the traversed graph in one shot.
■ Make use of the passive fetching strategies offered by Hibernate Core (sub-

select and entity/collection batch size).
■ Use both techniques.

If you’re ranting about the number of associations that need to be loaded, chances
are you didn’t follow our advice from chapter 4. Make sure to use @IndexedEmbedded
and @ContainedBy if you really need to query the association. That’s okay; the next
time you’ll pay more attention. ;o)

This is a first-aid kit for improving performance. Make sure to read section 9.1 for
more information on indexing optimization.

156 CHAPTER 5 Indexing: where, how, what, and when
This is the primary, and in a lot of applications the only, use case for using a manual
indexing API. But the manual indexing API can be useful in a couple of other situa-
tions. Let’s explore some of them.

5.4.3 Disabling transparent indexing: taking control

In traditional Lucene applications, one of the indexing strategies consists of indexing
the data once a day in one big batch operation (see figure 5.12). This is a legitimate
approach because it solves some of the problems encountered in Lucene:

■ There’s no locking issue, because the batch process is the only one in control.
■ Indexing in a batch operation is the best approach with Lucene performance-

wise.
■ It does not affect front-end production servers.

There are drawbacks associated with such a strategy:

■ Queries can return stale data (up to one day old).
■ Contrary to the standard Hibernate Search approach, the database needs to be

hit again when reindexing occurs because the data has to be loaded. This puts
more pressure on the database.

Hibernate Search lets you simulate such a mode by disabling the event model. When
it is off, changes made by Hibernate Core are not monitored by Hibernate Search, but
you can still use the manual indexing APIs. In such a system, the batch indexing pro-
cess would read the database and use the manual indexing APIs to update a Lucene
directory. The updated Lucene directory would then be pushed one way or another to
the front end (copy, rsync, shared directory, and so on).

 To disable event processing in Hibernate Search, use the hiber-

nate.search.indexing_strategy property:

hibernate.search.indexing_strategy manual

WARNING Even if the events are not processed, the event listeners must still be
present for Hibernate Search to work. If you use Hibernate Annota-
tions, you’ll have no problem because the event listener registration is
done transparently for you. But if you use Hibernate Core, you must
be sure to keep the event listeners in the configuration (see
section 5.3.1 for more information).

Figure 5.12 Batch approach: Once a day,
data is indexed and pushed to the front end.

157Indexing:when transparency is not enough
If you think this approach fits your application model better, don’t run too fast. You
can mix the Hibernate Search event model and still index data in a dedicated server
once a day. By using the clustered JMS mode, Hibernate Search sends all domain
model modifications to a queue. The Message-Driven Bean reading the JMS queue
can process it once a day rather than as soon as the message arrives (see figure 5.13).
Alternatively, messages can be processed as they arrive (which will smooth the work-
load on the dedicated server), but the updated indexes can be copied once a day
rather than once per hour.

 Keeping the event model has its benefits:

■ It’s fairly lightweight for the front end because it doesn’t apply indexing.
■ The batch-indexing process doesn’t have to figure out which part of the data set

needs reindexing.
■ The batch indexing process doesn’t have to read the data from the database,

and the database workload is reduced.

One of the drawbacks is that the same entity might be updated several times between
two runs of the batch process. It will uselessly be indexed multiple times. There are no
functional consequences for the index, just some spare cycles lost.

 The second use case we’ll discuss involves third-party applications. Sometimes your
application is not the only one updating the data you’re relying on. This is quite prob-
lematic in a transparent event-based model because Hibernate Search won’t be noti-
fied of these changes by default. The manual indexing API can be used in several ways
to work around this problem.

 You can disable the event model and manually update or recreate your indexes on
a regular basis. The batch process is then responsible for reindexing the part of the
data set that changed or the entire data set if the indexing time is acceptable.

 Another solution that might require more work on your side is to open a public
API in the application that’s to be notified of an external change. Let’s say your core
application is in Java, but part of it is done in Ruby. You can easily expose a URL or a
service that your Ruby application will call when it changes an entity. When receiving

Figure 5.13 Mixing the batch approach and the
event approach reduces the database workload.

158 CHAPTER 5 Indexing: where, how, what, and when
an event (the entity type and its primary
key), your application invokes the manual
indexing API and keeps the index up to date
(see figure 5.14).

 Try to stay as much as possible in the
transparent indexing model, but don’t
panic if you cannot. Hibernate Search has
the necessary APIs to palliate when the event
model doesn’t catch up with all the neces-
sary changes.

5.5 Summary
This chapter covered the missing pieces of
how indexing is done in Hibernate Search. Where chapters 3 and 4 covered the map-
ping between the object model and the index model, chapter 5 focused on the infra-
structure needs of the indexing process:

■ Where to store the index information and how to customize that with
DirectoryProviders.

■ How to properly normalize the text to be indexed and add new search features
such as synonyms and phonetic search.

■ How to not worry about indexing because Hibernate Search uses the Hibernate
Core event model to list all the required changes and apply them in an opti-
mized way.

■ How to take control of the indexing process if the application requires it.

All this hard work would be useless in and by itself. But everything is now in place to
write mind-blowing full-text search queries. While the book goes into great detail
about mapping and the Hibernate Search indexing architecture, you’ll care little
about it in your day-to-day work. And that’s the intention: Hibernate Search takes care
of the hard infrastructure work to free you to build fine-tuned queries specific to your
business rules. The next part of the book is all about that.

Figure 5.14 A third-party application that
modifies the same data set can notify the
Hibernate Search application of any change.

Part 3

Taming the
retrieval mismatch

Now you are ready to tackle how to write full-text queries and retrieve
information. Chapter 6 describes how to efficiently retrieve matching entities
from a Hibernate Search query and how this query model is integrated with
Hibernate Core. Chapter 7 covers what you need to know about Lucene in order
to create and build the right queries for your needs. Chapter 8 introduces you to
the notion of query filtering and describes how to declaratively apply cross-cut-
ting restrictions on your searches.

Querying with
Hibernate Search
Hibernate Search queries are the key component shielding your application from
the mismatches between the index model and the domain model and helping you
to migrate queries from SQL, HQL, or Criteria to full-text queries easily. Building a
full-text query with Hibernate Search consists of two steps:

1 Build a Lucene query to express the full-text search (either through the
query parser or the programmatic API).

2 Build a Hibernate Search query that wraps the Lucene query.

This chapter covers
■ Creating and executing a Hibernate

Search query
■ Using pagination
■ Using projection
■ Converting results in a different structure

(ResultTransformer)

■ Defining a fetching strategy
161

162 CHAPTER 6 Querying with Hibernate Search
But first you need to understand why we need this wrapper around Lucene queries.

6.1 Understanding the query paradigm
You may wonder why we’d use Hibernate Search to execute our query rather than
plain Lucene. After all, chapters 3, 4, and 5 showed how Hibernate Search helps us
index data in a regular Lucene index. Let’s imagine that we use plain Lucene to find
our data and explore the problems we’d face.

6.1.1 The burdens of using Lucene by hand

You need to build the Lucene query to match your needs. While this step requires you
to interact with the Lucene query API (either the query parser or the programmatic
query APIs), this isn’t a problem in practice. You need to be aware of the Lucene fea-
tures you want to use, such as fuzzy search, boost factors, and so on. Because Hiber-
nate Search defines Lucene fields with the same name as their respective object
properties by default, understanding a query and its target is fairly easy. The query
title:hibernate description:search author.firstname:emmanuel targeting book
objects is fairly straightforward to understand when you’re familiar with the object
model. If you need to refresh your memory on how to map properties into fields, look
at chapter 3. Chapter 7 explains in great detail how to build the Lucene query.

 Once the query is built, you need to execute it. If you don’t use Hibernate Search,
you have to follow these steps:

1 Open the Lucene directory (or directories) involved.
2 Build one or several IndexReaders and an IndexSearcher on top of them.
3 Call the appropriate execution method from IndexSearcher.

To keep Lucene as efficient as possible, you should reuse the same IndexSearcher or
IndexReader. Lucene works best after the searcher has warmed up. You’ll need to
keep the searcher around for as long as you can, but not too long; a searcher doesn’t
see the changes made after it is opened. Almost every Lucene user has to write some
kind of resource management framework around the raw Lucene APIs. When you use
Hibernate Search, these optimizations are done for you under the cover.

 Back to our plain Lucene approach. Once the query is executed and the list of
matching Documents is returned, you need to convert them into objects of your
domain model. Several solutions are possible: You could “rehydrate” them from the
field values stored in the Lucene index, or you could use a Hibernate Session to load
them and retrieve Hibernate managed objects. The first approach may seem interest-
ing, but it has some problems in the long run. As we have seen in section 1.4.3, these
hydrated objects don’t have their associations lazily loaded and transparently accessi-
ble. Changes made to these objects will not be propagated to the database and the
index unless you take some sort of manual action. The second approach (using
Hibernate Core to load the objects) doesn’t suffer from these drawbacks, but it needs
to be done in an efficient way. Loading objects one by one won’t work very well!

 Alternatively, you could decide to not convert the Lucene results into objects and
use the native Lucene APIs. This is a legitimate choice but requires changes to your

163Understanding the query paradigm
overall application. In lieu of manipulating (managed) objects from your domain
model all the way up to your presentation layer, you’ll need to deal with native Lucene
API objects and play by their lifecycle. This could mean a significant API and program-
matic shift in your application, and you’d lose the benefits of object-oriented design,
such as type-safety and strong typing. Hibernate Search relieves you of this burden.

 As you’ve just seen, working manually with Lucene to execute the query and pro-
cess the elements has some challenges. This chapter will show you how Hibernate
Search makes this process much simpler for the application developer.

6.1.2 Query mimicry

Ideally, creating and invoking a full-text query should be no different than creating
and invoking an HQL query. The APIs and the process should be similar enough for the
application developer to feel at home. This is exactly the goal Hibernate Search tries
to achieve. Queries run by Hibernate Search are similar to queries created in HQL,
JPA-QL, or the Criteria API (Hibernate Criteria query API) in many ways:

■ Returned objects are Hibernate managed objects.
■ The query API is similar.
■ The query semantic is also similar.

Objects returned by a Hibernate Search full-text query are regular Hibernate man-
aged objects attached to a persistence context. You can:

■ Navigate from them and benefit from the transparent lazy-loading mechanism.
■ Change the state of these objects; the change will be propagated to the database

(and the index).

As a matter of fact, a JPA-QL query and a full-text query that retrieve the same set of
objects will return the same object instances (in a given Hibernate Session or Java
Persistence EntityManager). Listing 6.1 shows the mimicry in action. Queries return-
ing the same objects will benefit from the persistence context unicity regardless of the
query mechanism.

Item itemFromGet = (Item) session.get(Item.class, id);

Criteria criteriaQuery = session.createCriteria(Item.class)
 .add(Restrictions.idEq(id));
Item itemFromCriteria = (Item) criteriaQuery.uniqueResult();

TermQuery termQuery = new TermQuery(new Term("id", id.toString()));
Item itemFromFullText = (Item) session
 .createFullTextQuery(termQuery, Item.class)
 .uniqueResult();

assert itemFromGet == itemFromCriteria;
assert itemFromCriteria == itemFromFullText;

assert itemFromGet == itemFromFullText;

Listing 6.1 Mimicry in action

Look up an
object

Load through
the Criteria API

Load through a full-
text query

All object references
are the same

164 CHAPTER 6 Querying with Hibernate Search
Since objects returned by a full-text search are retrieved from the persistence context,
interacting with them in the rest of the application is completely transparent. They are
treated as any object retrieved by Hibernate (HQL, Criteria query, lookup, or full-text).

 Hibernate Search pushes the similarity even further by sharing the same query
interface as the other Hibernate query facilities. The object returned by the full-text
query build method (FullTextSession.createFullTextQuery()) implements either
org.hibernate.Query or javax.persistence.Query. Once the query object is cre-
ated, using it is exactly the same as using a traditional HQL query (execution, pagina-
tion, and so on).

 Now that you’re aware of the semantics, let’s see how Hibernate Search converts a
Lucene query into Hibernate objects.

6.1.3 Getting domain objects from a Lucene query

Let’s assume that you have a Lucene Query object ready to be executed (see chapter 7
for more information). Instead of manually opening a Lucene Index Reader object
and calling the search method, you pass the raw Lucene Query object to Hibernate
Search. Hibernate Search applies its magic sauce to the Lucene query: Some ingredi-
ents are put in before execution, but most after. The query execution logic is dis-
played in figure 6.1.

 Hibernate Search prepares the Lucene query before its execution:

1 It determines the Lucene Directorys and opens the correct IndexReaders
based on the targeted classes (generally, Hibernate Search will reuse
IndexReader instances instead of physically opening them for each query).

2 It sets the optional sort criteria (sorting is described in section 6.7).
3 It applies the optional declarative filters (chapter 8 covers this topic).

The Lucene query is then executed. At this stage, by executing the Lucene query and
without having to load any object or document, we know the total number of objects
matching the query.

 In the next step, Hibernate Search reads the necessary matching Lucene Docu-
ments. Depending on the execution choice (list(), iterate(), scroll()) and the

Figure 6.1 Logical steps applied during a
Hibernate Search query

165Understanding the query paradigm
use of pagination, the number of elements read can be drastically reduced (and per-
formance improved). As you will see in section 6.4, using pagination limits is recom-
mended from both a performance and a business point of view.

 Hibernate Search extracts the class and identifier from each Document. These two
pieces of information will be necessary to load the object corresponding to the Docu-
ment from the persistence context. If the query uses projection (see section 6.5), this
operation also reads projected properties from the index.

 Hibernate Search loads the necessary entity instances based on their class and
identifier using the Hibernate Session, the persistence context. Various techniques
are used to minimize the number of database queries. The retrieved objects are
returned in the same order as the Lucene Documents (usually ordered by relevance)
and passed to the application as a List, Iterator, or ScrollableResults as an
org.hibernate.Query or javax.persistence.Query would do for an HQL query.
Hibernate Core provides these objects from the persistence context; lazy loading,
transparent navigation, and transparent object management (any change to the
object is propagated to the database and the index) are granted.

Isn’t hydrating objects from the Hibernate Session much slower
than from Lucene?
Retrieving documents matching a Lucene query consists of two steps:

1 Read the index files to find the matching documents and order them by rele-
vance (if you use Lucene’s sort capability, this becomes slightly more compli-
cated but is in essence similar).

2 Load the stored fields for each accessed Document.

Document fields are stored in a different set of files than the index information. Load-
ing a Document is essentially leading to a random file access.

Looking up a row from a database by id and retrieving the columns is not fundamen-
tally different from the second step in Lucene.

The performance difference between the two techniques more likely depends on addi-
tional factors, such as:

■ Input/output performance differences between Lucene (usually disk access
and random file access) and the database (usually network access)

■ Availability of the data in the database cache

On top of the raw performance of each operation, don’t forget that Hibernate caches
objects in the persistence context (and if set up, in the second-level cache), which in
some situations eliminates database round-trips.

Beyond performance, the level of features available to objects loaded from the per-
sistence context (lazy loading, managed objects, unicity, and so on) negates the per-
formance consideration most of the time. Hibernate Search also provides a
projection mode that lets you bypass the persistence context if needed. We’ll
describe this mode in greater detail in section 6.5.

166 CHAPTER 6 Querying with Hibernate Search

Hibernate Search queries have one additional benefit. If the index is slightly out of
date compared to the database, some documents can point to objects that are no
longer present in the database. Index desynchronization can come from the small
replication delay occurring in a cluster when asynchronous replication is used (see
chapter 10) or because some third-party applications have updated the database and
the change has not yet been reflected. Hibernate Search transparently removes
those orphaned documents from the results, and this inconsistency is hidden to the
application.

 Enough theory for now; let’s see how to build a Hibernate Search query!

6.2 Building a Hibernate Search query
A Hibernate Search query is essentially a smart wrapper around a Lucene query. The
first step for an application developer is to write the Lucene query that will retrieve
the necessary objects. We’ll cover this vast topic in chapter 7. The next step is to build
a Hibernate Search query.

 Like most operations specific to Hibernate Search, creating a full-text query is
done through the FullTextSession or FullTextEntityManager API.

6.2.1 Building a FullTextSession or a FullTextEntityManager

Hibernate Search queries are created from a FullTextSession object, just like a
Hibernate HQL query is created from a Session object. FullTextSession is an inter-
face that subclasses org.hibernate.Session. It is quite transparent to replace Ses-
sion references by FullTextSession references in a code base. The FullTextSession
implementation is a wrapper around a Session object, which can be built using the
org.hibernate.search.Search.getFullTextSession method, as shown in
listing 6.2.

//with the Hibernate Core
Session session = sessionFactory.openSession();

FullTextSession ftSession =
 org.hibernate.search.Search.getFullTextSession(session);

...
session.close();

//with Java Persistence
//in an application managed environment
EntityManager entityManager = entityManagerFactory.createEntityManager();
FullTextEntityManager ftEntityManager =
 org.hibernate.search.jpa.Search.getFullTextEntityManager(
 ➥entityManager);
 ...
entityManager.close();

//in a container managed environment

Listing 6.2 Creating a FullTextSession or FullTextEntityManager

Retrieve a session

Wrap a session in a
FullTextSession B

Retrieve an
entityManagerWrap an EntityManager in

a FullTextEntityManagerC

167Building a Hibernate Search query Get an D
@PersistenceContext private EntityManager em;

public List<Item> findItems(String query) {
 FullTextEntityManager ftEm =
 org.hibernate.search.jpa.Search.getFullTextEntityManager(em);
 ...
}

B A full-text session is created out of a regular Hibernate Session. C A full-text
entity manager is created out of a regular Hibernate EntityManager object. D When
using a managed entity manager, there’s no need to close it even when it is wrapped
by Hibernate Search.

 Developers using Hibernate EntityManager simply wrap their EntityManager
objects with FullTextEntityManager by using the org.hibernate.search.

jpa.Search.getFullTextEntityManager method (note the jpa package).

NOTE getFullTextSession and getFullTextEntityManager were named cre-
ateFullTextSession and createFullTextEntityManager in Hibernate
Search 3.0.1 and previous versions.

A FullTextSession is a simple wrapper around a Session object; it holds
no state in and by itself. In particular, calling close() on FullTextSes-
sion is equivalent to calling close() on the underlying Session object.
Don’t call close() on both objects!

Generally speaking, the session opening and closing should be left to an application
framework such as EJB 3.0, Spring, or JBoss Seam. By relieving developers from man-
aging the session as a resource, these frameworks reduce the amount of potential
bugs. In such an environment, simply wrap the Session object or the EntityManager
object into its full-text version, and forget about its lifecycle management.

 On the JBoss Seam website, seamframework.org, you can read the following state-
ment: “Seam is a powerful open source development platform for building rich inter-
net applications in Java. Seam integrates technologies such as ... into a unified full-
stack solution, complete with sophisticated tooling.”

 Good news for Hibernate Search users: Seam also integrates with Hibernate
Search. FullTextSession or FullTextEntityManager instances are directly injected
by Seam. Listing 6.3 shows how to use it.

//with native Hibernate
@In FullTextSession session;
public List<Item> findItems(String query) {
 //work with the full-text session
}

//in a Java Persistence environment
@In FullTextEntityManager entityManager;

public List<Item> findItems(String query) {

Listing 6.3 Injecting FullTextSession or FullTextEntityManager

EntityManager
injected

Wrap an EntityManager in a
FullTextEntityManager

The FullTextSession
object is injected

The FullTextEntityManager
object is injected

168 CHAPTER 6 Querying with Hibernate Search
 ...
}

In JBoss Seam, you no longer need to use the Search wrapping methods. This makes
the code slightly more natural.

 We now have access to the right API. Let’s create a Hibernate Search query.

6.2.2 Creating a FullTextQuery

A Hibernate Search query is a wrapper around a Lucene query exposed as a standard
Hibernate or Java Persistence query object. If you use a FullTextSession object, an
org.hibernate.Query object is returned by the createFullTextQuery() method. If
you use a FullTextEntityManager object, a javax.persistence.Query object is
returned by the createFullTextQuery() method. This is particularly interesting when
migrating traditional SQL/HQL-based queries to full-text queries. While the creation of
the query changes, subsequent manipulations (settings, execution, and so on) do not.

NOTE All subsequent code examples in this chapter make use of a simple yet
powerful framework to deal with Session or EntityManager. It also trans-
parently opens and closes transactions. This framework shields the exam-
ple codes from plumbing code and makes them more readable. This
framework wraps every public method around an invocation interceptor
(SessionInvocationHandler). Before the public method is executed, a
Session or EntityManager is opened, and a transaction is started. The
Session or EntityManager is stored in a thread local variable (and avail-
able to the public method). The public method is executed. After the
method execution, the transaction is committed (or rolled back if some-
thing goes wrong), and the Session or EntityManager is closed. This
logic is described in listing 6.4.

public class SessionInvocationHandler implements InvocationHandler {

 private SessionFactory factory;
 private Object delegate;

 public SessionInvocationHandler(Object delegate,
 ➥SessionFactory factory) {
 this.factory = factory;
 this.delegate = delegate;
 }

 public Object invoke(Object proxy, Method method, Object[] args)
 throws Throwable {

 FullTextSession session =
 Search.getFullTextSession(
 factory.openSession()
);

 SessionHolder.setFullTextSession(session);

Listing 6.4 Interceptor-based framework

Work with the
FullTextEntityManager instance

Create a full-text
session objectB Store it in

a thread
local

C

169Building a Hibernate Search query
 Transaction tx = null;
 Object result;
 try {
 tx = session.beginTransaction();
 result = method.invoke(delegate, args);
 tx.commit();
 }
 catch (HibernateException e) {
 rollbackIfNeeded(tx);
 throw e;
 }
 catch (SearchException e) {
 rollbackIfNeeded(tx);
 throw e;
 }
 finally {
 session.close();
 SessionHolder.setFullTextSession(null);
 }
 return result;
 }

 private void rollbackIfNeeded(org.hibernate.Transaction tx) {
 if (tx != null && tx.isActive()) {
 tx.rollback();
 }
 }

}

We first open a Session and wrap it around a FullTextSession B. This
session is stored in a thread local variable C. Each method call E is
wrapped in a transaction D. As good citizens, we always free resources
and clear the thread local variable F.

This framework is quite primitive and aims at reproducing the kind of
transaction and resource management you can find in an EJB 3.0 con-
tainer or in a Spring or JBoss Seam container. Remember that every
example runs inside a transaction.

If you’re interested in this framework and how it uses dynamic proxies,
have a look at the test cases provided in the book’s example source files.

As a Hibernate Core or Hibernate EntityManager user, you already know how to exe-
cute and use these APIs. Listing 6.5 shows you how to create such full-text queries.

private org.apache.lucene.search.Query buildLuceneQuery(
 String words,
 Class<?> searchedEntity) {
 Analyzer analyzer;
 if (searchedEntity == null) {
 analyzer = getDefaultAnalyzer();
 }
 else {

Listing 6.5 Creating a FullTextQuery object

Start the
transaction

D

Execute the
methodE

Roll back in case
of exception

Always close
and free

F

Create a
Lucene queryBGet the most

appropriate
analyzer

C

Get the
default analyzer

170 CHAPTER 6 Querying with Hibernate Search
 analyzer = SessionHolder
 .getFullTextSession()
 .getSearchFactory()
 .getAnalyzer(searchedEntity);

 }

 QueryParser parser = new QueryParser("title", analyzer);
 org.apache.lucene.search.Query luceneQuery = null;
 try {
 luceneQuery = parser.parse(words);
 }
 catch (org.apache.lucene.queryParser.ParseException e) {
 throw new IllegalArgumentException(
 "Unable to parse search entry into a Lucene query", e);
 }
 return luceneQuery;
}

//Hibernate Core APIs
public List findByTitle(String words) {
 FullTextSession ftSession =
 SessionHolder.getFullTextSession();

 org.apache.lucene.search.Query luceneQuery =
buildLuceneQuery(words, null);

 org.hibernate.Query query =
 ftSession.createFullTextQuery(luceneQuery);
 @SuppressWarnings("unchecked")
 List<Item> results = query.list();
 return results;
}

//Java Persistence APIs
public List findByTitle(String words) {
 FullTextEntityManager ftEntityManager =
 ➥EntityManagerHolder.getFullTextEntityManager();

 org.apache.lucene.search.Query luceneQuery =
 buildLuceneQuery(words, null);

 javax.persistence.Query query =
 ftEntityManager.createFullTextQuery(luceneQuery);

 return query.list();
}

B The Lucene query describes the full-text query: Search the words in the title prop-
erty. C When the target type of the query is known, it’s more appropriate to use the
entity-specific analyzer (see listing 5.13). D Retrieve the Session object initialized by
the interceptor framework. E org.hibernate.Query is built from a Lucene query
when Hibernate Core APIs are used. F javax.persistence.Query is built from a
Lucene query when Hibernate EntityManager APIs are used.

Get the entity
scoped analyzer

Get the
FullTextSession

D

Create the full-
text query

E

Execute it

Create the
full-text
queryE

Execute it

171Building a Hibernate Search query
 Building the Lucene query is not the focus of this chapter, but listing 6.5 shows a
Lucene query built using a Lucene query parser targeting the title field. Building the
Hibernate Search full-text query is straightforward and consists of calling create-
FullTextQuery and passing the Lucene query.

EXCEPTIONS When errors occur, Hibernate Search raises SearchException. This
exception is a runtime exception and is used for all Hibernate
Search errors: mapping errors, configuration errors, engine execu-
tion errors, and usage errors.

We lied to you in this section. The createFullTextQuery methods return more than
the standard Query interfaces. The query objects returned actually implement a subin-
terface of org.hibernate.Query and javax.persistence.Query: respectively
org.hibernate.search.FullTextQuery and org.hibernate.search.jpa.FullText-
Query. These interfaces are useful when accessing some specific Hibernate Search fea-
tures. Don’t bother with this technical detail. You’ll naturally use the full-text version
of this interface when the need arises.

 The attentive reader may have noticed that nowhere do we state which entity type
the query is supposed to return. We’ll do so now.

6.2.3 Limiting the types of matching entities

A Lucene query doesn’t target specific Document types simply because Lucene doesn’t
have any notion of document type. Unless stated otherwise, Hibernate Search queries
target all types and are applied to all indexed entities. Hibernate Search makes sure to
apply the query on all the Lucene indexes and retrieve the matching results regardless
of the entity type. The set of objects returned by a Hibernate Search query can be a
mix of any of the indexed entities.

 This tremendous flexibility is essentially due to Lucene. In SQL the schema is
highly structured, and query clauses target columns of specific tables. In Lucene,
queries targeting fields (by name) can be applied to any index because indexes are
totally unstructured. Take the following Lucene query: title:batman. Any entity
type having an index property named title will be considered, regardless of the
type of entity it represents.

 This flexibility is very useful in some situations, but in most use cases an applica-
tion expects to retrieve matching results of a particular entity type. Our DVD store
example needs to retrieve matching DVDs and display them. Retrieving Actor objects
is not acceptable because our display logic only copes with Dvd objects: a Class-
CastException is likely to happen somewhere.

 Hibernate Search lets you restrict the entity types returned by a query. Let’s imple-
ment this restriction in the DVD store application in listing 6.6.

172 CHAPTER 6 Querying with Hibernate Search

public List<Item> findItemByTitle(String words) {
 FullTextSession ftSession = SessionHolder.getFullTextSession();
 org.apache.lucene.search.Query luceneQuery =
 buildLuceneQuery(words, Item.class);

 org.hibernate.Query query = ftSession.createFullTextQuery(
 luceneQuery,
 Item.class);
 return query.list();
}

As you can see in listing 6.6, we return a list of Items rather than a generic list of
results. You can return multiple entity types. The class parameter in createFullText-
Query is a vararg (a feature introduced in Java 5) and accepts a list of classes. ftSes-
sion.createFullTextQuery(luceneQuery, Item.class, Actor.class); returns
matching results of type Item and Actor. The same API is available on org.hiber-
nate.search.jpa.FullTextQuery.

Listing 6.6 Restrict full-text results to Item objects

List entities to
restrict by

Should a query return multiple types?
It’s quite common for a search engine to return matching results classified by type.
The online DVD store could return the list of matching Items as well as the lists of
matching Actors and Categorys and display them in separated visual buckets to
emphasize the difference to the users. Let’s imagine a query that requests Steve
McQueen. Our user interface expects to display the matching DVD, the matching
actors, and the (unlikely) categories matching in three separate lists.

Two strategies are possible:

■ Execute one full-text query returning the matching Item, Actor, and Cate-
gory elements, and separate them into three lists in the application code.

■ Execute three separate queries, each targeting one of the element types; the
elements are already separated for the application.

The first approach has one main benefit. The score (relative relevance of one element
compared to another) is computed homogeneously for all types and can be com-
pared. This might provide a more useful classification and help the application decide
whether or not to display a given type depending on its score.

However, the authors advise using the second approach. Executing three different
queries has several advantages:

■ Executing the Lucene query is very efficient and cheap. Running it three times
won’t have a significant impact on response time.

■ The application code is more type-safe, cleaner, and easier to read. This argu-
ment should be your main concern.

173Building a Hibernate Search query
Like Hibernate Core, Hibernate Search is fully polymorphic. The list of filtered
classes includes classes listed in the createFullTextQuery call and all their indexed
subclasses. In listing 6.6, Hibernate Search returns Item classes and all its subclasses
(Dvd, Pizza, Wine, assuming these three classes are subclasses of Item). If you need to
specifically target matching Pizza and ignore the other types, use this class instead of
Item when you create the full-text query.

Should a query return multiple types? (continued)
■ Pagination can be handled per targeted types. While we’re ready to display 20

DVDs, we want to display only the best three categories and the best three
actors.

The final decision is up to you. The authors have found the second approach easier
to deal with and the performance drawback not significant enough to be a bother.

Can I return matching elements of a given class excluding one subclass?
This is possible, but it doesn’t make a lot of sense from an object-oriented point of
view. If you face such a need in your system, chances are that your domain model
has been incorrectly designed and that you’ve overused inheritance.

To return all Items excluding Pizza, create the full-text query listing all the sub-
classes allowed:

fullTextEntityManager.createFullTextQuery(luceneQuery, Dvd.class, Wine.class);

An alternative approach is to use the special field Hibernate Search stores in the
index to restrict the Lucene query: DocumentBuilder.CLASS_FIELDNAME. Lucene
queries are explained in chapter 7, but you should have little trouble understanding
the meaning of listing 6.7.

private org.apache.lucene.search.BooleanQuery addExclusionClause(
 org.apache.lucene.search.Query userQuery) {

 org.apache.lucene.search.Query filterQuery = new TermQuery(
 new Term(DocumentBuilder.CLASS_FIELDNAME,
 Pizza.class.getName())
);

 org.apache.lucene.search.BooleanQuery luceneQuery = new
BooleanQuery();

 luceneQuery.add(userQuery, Occur.MUST);
 luceneQuery.add(filterQuery, Occur.MUST_NOT);

 return luceneQuery;

Listing 6.7 Filter out a class at the Lucene query level

Create the
filtering termB

Join the user queryC

Exclude the
filtering termD

174 CHAPTER 6 Querying with Hibernate Search
It’s good practice to limit the returned result types and explicitly list them. Hibernate
Search can optimize the interaction with Lucene by limiting the number of indexes
loaded. Beyond the optimization, the application code tends to be cleaner because it’s
more aware of the potential returned types. In most cases, it’s the root entity in a class
hierarchy (Item in the DVD store example).

 Hibernate Search loads objects from the persistence context as efficiently as possi-
ble. Strategies vary depending on a number of factors:

■ How the query is executed (list(), iterate(), or scroll())
■ Whether or not projection is used (see section 6.5)
■ Some characteristics of your identifier
■ Whether or not the fetching strategy is overridden
■ Potential additional factors

Depending on these factors, Hibernate Search loads objects using one of the follow-
ing strategies:

■ Create one or more SQL queries that load the matching objects by their identi-
fier.

■ Lazily load the objects by looking at them in the persistence context using
EntityManager.getReference() or Session.load() and subsequently force
the object initialization.

The first strategy is almost always the fastest approach and requires no intervention on
your part. This is the solution Hibernate Search uses most of the time. However, in
some situations, the second approach is necessary. The second approach works best if
a batch size is defined at the object level; rather than using n queries to initialize n
objects, Hibernate Search will trigger (n/batch size) queries. It’s a good idea to

Can I return matching elements of a given class excluding one subclass?
(continued)

}

fullTextEntityManager.createFullTextQuery(
 addExclusionClause(userQuery), Item.class);

B Create a term query matching the class to filter using the Hibernate Search spe-
cial field. C Add the Lucene query created by the user and mark it as mandatory. D
Exclude the filter clause explicitly from the results.

The first approach is preferable, because:

■ It is much easier to read
■ Hibernate Search can potentially reduce the number of indexes to run the

query on.

175Executing the full-text query
define a batch size for all your indexed objects, as shown in listing 6.8. What’s the best
value for batch size? A value equal or superior to the pagination value used in your
query. The pagination value is simply the number of objects your query will retrieve.
We’ll explain how to control pagination in section 6.4

@Entity
@Indexed
@BatchSize(20)
public class Item {
 ...
}

Simply place an @BatchSize B annotation on your entity.

NOTE Depending on the static fetching strategies of your object graph defined
in the Hibernate or Java Persistence mapping, subsequent queries might
be triggered. This typically happens when you choose a select or subse-
lect association loading instead of a join. You typically face this problem
in Hibernate when you look up objects by identifier. In this situation, you
need to adjust some mappings. For additional information on how to
handle these situations, we highly recommend Java Persistence with Hiber-
nate by Christian Bauer and Gavin King and published by Manning. An
alternative approach is to refine the fetching strategy for this particular
full-text query; this solution is described in section 6.8.

You might be a bit frustrated and wonder in which situations Hibernate Search uses
the query approach versus the lazy object loading approach. Hibernate Search has
improved and is still improving at a constant pace in this area. If we were to detail the
various cases, it would likely be obsolete by the time this book is published.

 After creating a full-text query and making sure it will run reasonably fast, the next
step is to execute the query and finally get what we’re searching for.

6.3 Executing the full-text query
People familiar with the Java Persistence query API or the Hibernate query API will be
at ease when it comes to executing the query. The same methods are available, and
they have the same semantics:

■ list() or getResultList()
■ uniqueResult() or getSingleResult()
■ iterate()

■ scroll()

Each approach has different characteristics, and its efficiency depends on the situa-
tion. Let’s explore some of the underlying details for each of these strategies to better
understand when to use each one.

Listing 6.8 Define batch size through annotation

Reduce database
round-trips

B

176 CHAPTER 6 Querying with Hibernate Search
6.3.1 Returning a list of results

The most used and useful API returns a List containing all matching objects.
Listing 6.9 shows this in action.

//using Hibernate Core
public List<String> displayAllByMatchingTitle(String words) {

 FullTextSession ftSession = SessionHolder.getFullTextSession();
 org.apache.lucene.search.Query luceneQuery =
 buildLuceneQuery(words, Item.class);

 org.hibernate.Query query = ftSession
 .createFullTextQuery(luceneQuery, Item.class);

 @SuppressWarnings("unchecked")
 List<Item> items = query.list();

 List<String> results = new ArrayList<String>();
 for (Item item : items) {
 StringBuilder itemInString = new StringBuilder("Item ")
 .append("(").append(item.getEan()).append(")")
 .append(" ").append(item.getTitle());
 results.add(itemInString.toString());
 }
 return results;
}

//using Hibernate EntityManager
public List<String> displayAllByMatchingTitle(String words) {

FullTextEntityManager ftEntityManager =
EntityManagerHolder.getFullTextEntityManager();
 org.apache.lucene.search.Query luceneQuery =
 buildLuceneQuery(words, Item.class);

 javax.persistence.Query query =
 ftEntityManager.createFullTextQuery(luceneQuery, Item.class);

 @SuppressWarnings("unchecked")
 List<Item> items = query.getResultList();

 List<String> results = new ArrayList<String>();
 for (Item item : items) {
 StringBuilder itemInString = new StringBuilder("Item ")
 .append("(").append(item.getEan()).append(")")
 .append(" ").append(item.getTitle());
 results.add(itemInString.toString());
 }
 return results;
}

B Use the Hibernate list() method: All matching objects are loaded eagerly. C Use
the Hibernate getResultList() method: All matching objects are loaded eagerly.

Listing 6.9 Retrieving results as a List

Return a list
of items

B

Return a list
of items

C

177Executing the full-text query
 All object identifiers are extracted from the Lucene index. All objects are loaded
and added to the list in the order retrieved by Lucene. This is important because it
respects ordering the user requests. This strategy is particularly efficient when you
expect to use all objects returned by a query. Hibernate Search usually manages to
load all necessary objects in a minimal number of SQL queries.

 If your application needs only a subset of the matching objects, Hibernate Search
allows pagination, as you will see in section 6.4. In some situations, most of the objects
are already present in the persistence context or in the second-level cache. In these
situations an iterator is more efficient.

6.3.2 Returning an iterator on the results

While Java Persistence does not offer this option, Hibernate provides the ability to
return an iterator on the matching results, and so does Hibernate Search.
Listing 6.10 shows the use of an iterator with the assumption that most objects will
be found in the persistence context or the second-level cache. Retrieving results
through an iterator is optimal when objects can be found in the persistence con-
text or the second-level cache.

public List<String> displayAllByMatchingTitleUsingCache(String words) {
 FullTextSession ftSession = SessionHolder.getFullTextSession();
 org.apache.lucene.search.Query luceneQuery =
 buildLuceneQuery(words, Item.class);

 org.hibernate.Query query = ftSession
 .createFullTextQuery(luceneQuery, Item.class);

 @SuppressWarnings("unchecked")
 Iterator<Item> items = query.iterate();

 List<String> results = new ArrayList<String>();
 while (items.hasNext()) {
 Item item = items.next();
 StringBuilder itemInString = new StringBuilder("Item ")
 .append("(").append(item.getEan()).append(")")
 .append(" ").append(item.getTitle());
 results.add(itemInString.toString());
 }
 return results;
}

B Read the necessary information from Lucene and return an Iterator. C On
next(), the current object is loaded from the persistence context.

 All object identifiers are extracted from the Lucene index, but objects are not
loaded until they are accessed (more precisely until iterator.next() is called).
This approach is very efficient if the objects loaded are already present in the
persistence context or the second-level cache. The number of database round-trips
is limited to the number of times an object is neither in the persistence context nor

Listing 6.10 Retrieving results through an iterator

Retrieve an
iterator on items

B

Load object from
the persistence
context

C

178 CHAPTER 6 Querying with Hibernate Search
in the second-level cache. This solution will work very poorly if most objects have to
be loaded from the database, because we’ll face the infamous n+1 loading issue.
Like list(), iterate() returns objects in the same order in which Lucene pro-
vides matching Documents.

 All object identifiers are loaded eagerly during Iterator creation to free Lucene
resources right away. While you can use pagination to mitigate the problem and
limit the load, loading all matching documents from Lucene might not be the per-
fect approach for your problem. An alternative solution involves the Scrollable-
Results API.

6.3.3 Returning a scrollable result set

A third querying approach involves using the Hibernate ScrollableResults API. The
ScrollableResults API offers these advantages over the iterator API:

■ Both objects and Lucene Documents are loaded on demand, reducing the mem-
ory usage and latency.

■ The navigation API is much richer, allowing navigation back and forth as well as
letting you seek a particular result.

Hibernate Search’s implementation minimizes resource consumption because
Lucene Documents and objects are lazily loaded. It is best suited for when the appli-
cation needs to navigate through part of the result set. Listing 6.11 shows how to use
the scroll API. Results are returned in the order in which Documents are returned by
Lucene. This method displays results starting from the middle of the result list up to
n elements.

public List<String> displayMediumResultsByMatchingTitle(String words, int n)
{

 FullTextSession ftSession = SessionHolder.getFullTextSession();
 org.apache.lucene.search.Query luceneQuery =
 buildLuceneQuery(words, Item.class);

 FullTextQuery query = ftSession
 .createFullTextQuery(luceneQuery, Item.class);

 query.setFetchSize(n);
 ScrollableResults items = query.scroll();

 List<String> results = new ArrayList<String>();
 try {
 items.beforeFirst();

 int mediumIndexJump = query.getResultSize() / 2;
 items.scroll(mediumIndexJump);

 int index = 0;
 while (index < n) {

Listing 6.11 Scrolling through part of the results minimizes resource consumption.

Define fetch sizeB

Retrieve
ScrollableResultsC

Go to the first positionD Jump to the
position before
the medium
elementJump to a

specific positionE

179Executing the full-text query
 if (items.next()) {
 Item item = (Item) items.get()[0];

 if (item != null) {
 StringBuilder itemInString = new StringBuilder("Item ")
 .append("(").append(item.getEan()).append(")")
 .append(" ").append(item.getTitle());
 results.add(itemInString.toString());
 index++;
 }
 else {
 //mismatch between the index and the database
 }
 }
 else {
 break;
 }
 }
 }
 finally {
 items.close();
 }
 return results;
}

B Elements will be preloaded by batch of fetch size. C Execute the query; no object
and no Lucene document are loaded at that point. D Set the cursor before the first
position. E Move forward mediumIndexJump elements to reach the medium element.
F Move to the next element and return true if within it. G Load the Lucene Docu-
ment and the object (up to the next fetch size elements) and return an array of objects
containing the entity instance. H Elements could be null when a mismatch exists
between the index and the database. I Close the Lucene resources associated with
this ScrollableResults in a finally block.

 As listing 6.11 shows, you need to close the ScrollableResults object after you’re
finished with it. Not following this rule will lead to Lucene reader leaks. A good
approach is to use a try finally structure, closing the ScrollableResults in the
finally block.

 Internally, the ScrollableResults implementation loads the Lucene Documents
and persistence context objects when they’re requested. To increase efficiency, it’s
possible to use a cache where elements are preloaded. The cache size is define by the
setFetchSize() method. You should keep the fetch size and the object batch size
(@BatchSize) at the same value. This is useful when Hibernate Search cannot use the
query approach strategy. To load n objects in a row, Hibernate Search would trigger
(n/fetch size) SQL queries.

Load the next elementF
Read the objectG

Ignore null
entriesH

Close resourcesI

180 CHAPTER 6 Querying with Hibernate Search
NOTE Contrary to the other execution methods (list(), iterate(), and
unique()), scroll() doesn’t try to shield the application from objects
found in the index but no longer available in the database. When such a
situation occurs, the scroll method returns null instead of the object.
While this is a fairly uncommon case, the code should make sure the
returned objects are not null.

One of the common use cases for scroll() is to walk through all the results and apply
some operations even when the results are too big to fit in memory. As shown in
listing 6.12 you need to clear the session on a regular basis to avoid generating an
OutOfMemoryException. Make sure to call flush() and flushToIndexes() before
clearing the session to propagate any object changes.

 flush()’s job is to synchronize the persistence context changes to the database. By
not calling flush(), you’d lose all object changes the minute you call clear() and
you would not see the change events propagated to Hibernate Search. Make sure to
call flush() before flushToIndexes() if changes have occurred in the persistence
context.

 When you call flushToIndexes(), you apply all necessary changes to the Lucene
indexes and free the Hibernate Search work queue and memory.

 When indexing an entity, Hibernate Search sometimes needs to initialize a lazy
property or association; this cannot be done if the object is detached (for example,
after calling clear()).

public void applyBatchChange(String words) {

 FullTextSession ftSession = SessionHolder.getFullTextSession();
 org.apache.lucene.search.Query luceneQuery =
 buildLuceneQuery(words, Item.class);

 FullTextQuery query = ftSession
 .createFullTextQuery(luceneQuery, Item.class);

 query.setFetchSize(FETCH_SIZE);

 ScrollableResults items = query.scroll();

 log("Results changed: " + query.getResultSize());
 try {
 items.beforeFirst();
 int index = 0;
 while(items.next()) {
 Item item = (Item) items.get()[0];
 index++;
 if (item != null) {
 applyChange(item);
 }
 if (index % WINDOW_SIZE == 0) {
 ftSession.flush();

Listing 6.12 Use scroll to navigate through a large matching result set

Define fetch size as
(window size)/NB

Update itemC

Clear memory
every window size

D

Flush changes to
the database

181Executing the full-text query
 ftSession.flushToIndexes();
 ftSession.clear();
 }
 }
 }
 finally {
 items.close();
 }
}

B Align fetch size and the window size so that window size is a multiple of fetch size to
maximize performance. C Apply some changes to the objects. D Flush and clear
after the last of the groups of elements in the window have been processed and before
triggering a new preloading. E In addition to calling Hibernate flush(), call flush-
ToIndexes(). F Release memory by clearing.

 Note that the scrollable fetch size is aligned to the window’s size to minimize the
number of database round-trips. In practice, window size has to be a multiple of fetch
size. Make sure to flush and clear right before the next scrollable get() operation trig-
gers the fetching. The get() call in the first loop iteration will load WINDOW_SIZE
objects. After the WINDOW_SIZE interations in the loop, flush and clear are executed,
and the next get() call will load the next batch of objects.

Of course, if you don’t modify the objects, calling flush() and flushToIndexes()
isn’t necessary; use only clear().

 If you know which object window to look for in advance (for example, from the
10th to the 19th matching results) and if the number fits easily in memory, using pag-
ination and list() is more suited.

 While the previous example shows how to walk through all the results, it’s interest-
ing sometimes to retrieve exactly one result.

6.3.4 Returning a single result

If you know the query is expected to return a single element, and if returning more
than one element is considered an error, you can use the uniqueResult (in Hiber-
nate) or getSingleResult (in Java Persistence) method. An interesting use case is to
implement a feature similar to the I’m Feeling Lucky™ button in the Google search

Flush changes
to the indexE

Clear memoryF

What’s a good window size?
You should choose the window size carefully to avoid generating an OutOfMemoryEx-
ception. Aside from that, the bigger the window, the better. You can also adjust
fetch size to minimize the number of database round-trips. While 100 for fetch size
and 1000 for window size is a safe bet, your mileage may vary depending on the com-
plexity of your object graph. We highly recommend you test your code in a production
environment to determine the ideal value.

182 CHAPTER 6 Querying with Hibernate Search
engine. This feature returns only the first matching element of a full-text query. List-
ing 6.13 shows an implementation of this feature.

//Hibernate Core
public String displayIMFeelingLuckyByMatchingTitle(String words) {

 FullTextSession ftSession = SessionHolder.getFullTextSession();
 org.apache.lucene.search.Query luceneQuery =
 buildLuceneQuery(words, Item.class);

 org.hibernate.Query query = ftSession
 .createFullTextQuery(luceneQuery, Item.class);

 Item item = (Item) query
 .setFirstResult(0).setMaxResults(1)
 .uniqueResult();

 StringBuilder itemInString = new StringBuilder("Item ");
 if (item == null) {
 itemInString.append("not found");
 }
 else {
 itemInString.append("(").append(item.getEan()).append(")")
 .append(" ").append(item.getTitle());
 }
 return itemInString.toString();
}

//java Persistence
public String displayIMFeelingLuckyByMatchingTitle(String words) {

 FullTextEntityManager ftEntityManager =
 EntityManagerHolder.getFullTextEntityManager();
 org.apache.lucene.search.Query luceneQuery =
 buildLuceneQuery(words, Item.class);

 javax.persistence.Query query =
 ftEntityManager.createFullTextQuery(luceneQuery, Item.class);

 Query hSearchQuery = query
 .setFirstResult(0).setMaxResults(1);

 Item item;
 try {
 item = (Item) hSearchQuery.getSingleResult();
 }
 catch (NoResultException e) {
 item = null;
 }

 StringBuilder itemInString = new StringBuilder("Item ");
 if (item == null) {
 itemInString.append("not found");
 }
 else {
 itemInString.append("(").append(item.getEan()).append(")")

Listing 6.13 Implement the lucky feature: Return the first matching object

Use pagination to
return one result

B

Return one elementC

Return one
element

D

Guard against no
element found

183Paginating through results and finding the total
 .append(" ").append(item.getTitle());
 }
 return itemInString.toString();
}

B Use pagination to return the first matching element: the lucky one. C uniqueRe-
sult() returns either null or the unique object (if more than one object is returned,
an exception is raised). D getSingleResult() returns the unique object or a
NoResultException if no object is found.

WARNING The semantics of org.hibernate.Query.uniqueResult() and
javax.persistence.Query.getSingleResult() are different. The
former returns null if no object is found; the latter raises a NoResult-
Exception.

We’ve shown various ways to retrieve information depending on what needs to be
done with it. Regardless of the approach you choose, we suggest using pagination as a
solution to improve performance.

6.4 Paginating through results and finding the total
Pagination is the idea of retrieving a subset of the total matching results by defining
the first element to retrieve and the total number of elements to retrieve. It has sev-
eral technical advantages. It reduces the following:

■ Lucene index work (CPU usage and input/output)
■ Database work
■ Network traffic between the database and the application server
■ The application’s CPU and memory usage
■ Response time

The throughput of your application will consequently increase.
 Surprisingly pagination also provides advantages to your user and application.

Realistically a user cannot browse through 100,000 results, so we could limit the total
number of results to the first 100 elements. Because results are ordered by relevance,
chances are that the user will find information in the first few matching results. If the
user is unlucky, however, he’ll probably change his query after browsing the first few
dozen results or simply give up. Why is that? Your user will see (or feel) a decrease of
usefulness in the result list (because the results are ordered by decreasing relevance).
These are typical search patterns that you could expect; the following story is more
interesting.

 Google did a user survey and, fairly unanimously, users were asking for more
results per page. Google conducted a test and returned 30 results per page rather
than the traditional 10. The revenue and traffic dropped by 20 percent. Why were cus-
tomers who said they wanted more results per page now acting as if they didn’t like it?
It turns out that people are very sensitive to time. Nobody likes to wait for a search
result, and people have little patience. Amazon did a similar experiment. It artificially

184 CHAPTER 6 Querying with Hibernate Search
delayed the result page rendering in increments of 100 milliseconds and found that
even small delays would result in a significant drop in revenue.

 There are several ways to speed up performance, and pagination is one of them.
Of course, depending on the target user and the type of data, the pagination window
needs to be adjusted.

Let’s explore the pagination API.

6.4.1 Using pagination

The same pagination API used by HQL queries is used in full-text queries. You’ve
already seen this API in listing 6.13 while implementing the I’m Feeling Lucky™ fea-
ture. Listing 6.14 shows a more traditional use of pagination to display partial results.

//Hibernate Core
public List<String> displayAllByMatchingTitle(
 String words,
 int pageNumber,
 int window) {

 FullTextSession ftSession = SessionHolder.getFullTextSession();
 org.apache.lucene.search.Query luceneQuery =
 buildLuceneQuery(words, Item.class);

 org.hibernate.Query query = ftSession.createFullTextQuery(
 luceneQuery, Item.class);

 @SuppressWarnings("unchecked")
 List<Item> items = query
 .setFirstResult((pageNumber - 1) * window)

 .setMaxResults(window)
 .list();

 List<String> results = new ArrayList<String>();
 for (Item item : items) {
 StringBuilder itemInString = new StringBuilder("Item ")
 .append("(").append(item.getEan()).append(")")

Listing 6.14 Using pagination on a full-text query

Users have no pity
There’s nothing worse for a user than to rely on a search engine and fail to receive
an answer (well, maybe there are worse things, but you get the point). A key influence
on user happiness is to have the search engine tuned to maximize the relevance of
the results, especially the first few results.

One way to achieve that is to study the kind of queries users enter and the kind of
results they expect. From there, you can adjust the properties you search into, their
boost factors and the kind of Lucene queries you use (fuzzy, range, and so on; see
chapter 7 for more information).

Set first result
from the page

B

Set number of resultsC

185Paginating through results and finding the total
 .append(" ").append(item.getTitle());
 results.add(itemInString.toString());
 }
 return results;
}

//Java Persistence
public List<String> displayAllByMatchingTitle(String words, int pageNumber,
➥int window) {

 FullTextEntityManager ftEntityManager =
 EntityManagerHolder.getFullTextEntityManager();
 org.apache.lucene.search.Query luceneQuery =
 buildLuceneQuery(words, Item.class);

 javax.persistence.Query query =
 ftEntityManager.createFullTextQuery(luceneQuery, Item.class);

 @SuppressWarnings("unchecked")
 List<Item> items = query
 .setFirstResult((pageNumber - 1) * window)
 .setMaxResults(window)
 .getResultList();

 List<String> results = new ArrayList<String>();
 for (Item item : items) {
 StringBuilder itemInString = new StringBuilder("Item ")
 .append("(").append(item.getEan())
 .append(")") .append(" ").append(item.getTitle());
 results.add(itemInString.toString());
 }
 return results;
}

B Set the first element returned starting from index 0 (the first page starts at 0, the
second at window 1, and so on). C Set the maximum number of results returned. D
The same API is available from Java Persistence.

 Pagination limits the number of Lucene documents loaded as well as the number
of objects hydrated. Because executing a Lucene query is quite cheap, you should exe-
cute the query a second time when a user wishes to see the next page rather than
keeping the results around.

TIP maxResults represents the maximum number of results returned and is
usually the total number of results returned. However, if firstResult is
close to the end of the list (less than maxResults away from the last
index), the total number of results is lower than maxResults. If firstRe-
sult is beyond the end of the list, no result is returned. Make sure your
pagination client code is aware of this behavior.

One of the traditional problems with pagination in SQL lies in the fact that you cannot
find the total number of matching results unless a second query (select count(*)
from ...) is performed.

Set pagination
according to
the windowD

186 CHAPTER 6 Querying with Hibernate Search
6.4.2 Retrieving the total number of results

Full-text queries are completely different from SQL queries, and the total number of
results is accessible without the extra SQL query cost. Hibernate Search exposes this
information in the FullTextQuery API (see listing 6.15).

//Hibernate Core
public int displayResultSizeByMatchingTitle(String words) {

 FullTextSession ftSession = SessionHolder.getFullTextSession();
 org.apache.lucene.search.Query luceneQuery =
 buildLuceneQuery(words, Item.class);
 FullTextQuery query = ftSession.createFullTextQuery(
 luceneQuery, Item.class);

 return query.getResultSize();
}

public ResultHolder displayResultsAndTotalByMatchingTitle(
 String words,
 int pageNumber,
 int window) {

 FullTextSession ftSession = SessionHolder.getFullTextSession();
 org.apache.lucene.search.Query luceneQuery =
 buildLuceneQuery(words, Item.class);

 FullTextQuery query = ftSession.createFullTextQuery(
 luceneQuery, Item.class);

 @SuppressWarnings("unchecked")
 List<String> results = query
 .setFirstResult((pageNumber - 1) * window)
 .setMaxResults(window)
 .list();

 int resultSize = query.getResultSize();

 ResultHolder holder = new ResultHolder(results, resultSize);
 return holder;
}

public class ResultHolder {
 private final List<String> results;
 private final int resultSize;

 public ResultHolder(List<String> results, int resultSize) {
 super();
 this.results = Collections.unmodifiableList(results);
 this.resultSize = resultSize;
 }

 public List<String> getResults() {
 return results;
 }
 public int getResultSize() {
 return resultSize;

Listing 6.15 Using the total number of results to adjust a query

Number of matching
results (cheap)B

Return
matching results

C Return total
number of
results

D

187Paginating through results and finding the total
 }
}

//Java Persistence
public int displayResultSizeByMatchingTitle(String words) {

 FullTextEntityManager ftEntityManager =
 EntityManagerHolder.getFullTextEntityManager();
 org.apache.lucene.search.Query luceneQuery =
 buildLuceneQuery(words, Item.class);

 FullTextQuery query = ftEntityManager.createFullTextQuery(
 luceneQuery, Item.class);

 return query.getResultSize();
}

B FullTextQuery.getResultSize() executes the Lucene query without loading
objects or Lucene Documents. C When list() is executed, the result size is computed
and available. D Subsequent getResultSize() calls no longer trigger a query. E Java
Persistence’s FullTextQuery also contains the getResultSize() method.

 If you call only FullTextQuery.getResultSize(), the Lucene query is executed,
but no Lucene document is accessed and no object is loaded from the persistence
context. The result is not influenced by pagination. This is a very powerful and effi-
cient tool for building a multistage search engine, and we’ll cover it next.

TIP If you want both the total number of results and the (paginated) list of
results, call list(), scroll(), iterate(), and getResultList() before
calling getResultSize() on the same query object. This uses one
Lucene query instead of two.

This feature can be used beyond displaying the total number of results to your user.
Let’s explore an interesting example.

6.4.3 Multistage search engine

A multistage search engine executes one query per stage. Subsequent stages remove
restrictions on the user query or increase the targeted elements. Figure 6.2 illustrates
the process of a multistage search engine.

 For each stage in the search engine, getResultSize() is executed on the Full-
TextQuery object. If the number of results doesn’t match expectations, the next stage
is processed. If the next stage meets the requirements, list() is executed on the
FullTextQuery object, and the results are returned. Each stage executes a broader
query to gather additional results.

 Now that we’ve selected the appropriate amount of results to display to the user,
we need to decide what to display. Sometimes loading the whole object (graph) to dis-
play two simple properties is overkill. Projection is helpful in such situations.

Number of matching
results (cheap)

E

188 CHAPTER 6 Querying with Hibernate Search
6.5 Projection properties and metadata
In Hibernate Core, a projection query is a query that returns some properties rather
than the full managed object. Properties are projected to the result set. Projection
queries are exactly the same in Hibernate Search. They are a way to retrieve some
properties rather than the full managed object, the principal difference being that
the data is retrieved from the Lucene index rather than from the database.

 If, after using pagination, you find that returning the hydrated object is still too
slow for your needs, projection might give you what you expect performance-wise. But
projecting a property requires some advance preparation. Because the value is
extracted from the index and pushed to the query results, projected properties must
be stored, and their associated field bridges must be two-way. All built-in bridges pro-
vided by Hibernate Search are two-way: They convert the data back and forth between
the object model and the index (see section 4.1).

Figure 6.2 Example of multistage search engine

189Projection properties and metadata
TIP Storing properties increases the index size and might slow down queries
overall. Be sure to select and store only properties you expect to project.

Unlike with SQL, full-text queries do not have a select clause; fullTextQuery.set-
Projection() describes the properties to project for a given query (see listing
6.16). Properties must be stored in the index and have a two-way bridge. If no prop-
erty is projected and defined through setProjection(), regular managed objects
are returned.

@Entity
@Indexed
@Table(name="PRODUCTS")
@Inheritance(strategy=InheritanceType.JOINED)
public class Item {

 @Id
 @GeneratedValue
 @DocumentId
 @Column(name="PROD_ID")
 private Integer id;

 @Field(index=Index.TOKENIZED, store=Store.YES)
 @Column(name="TITLE")
 @NotNull
 @Length(max=100)
 private String title;

 @Field(index=Index.UN_TOKENIZED, store=Store.YES)
 @Column(name="ASIN")
 @Length(max=16)
 private String ean;
}

public List<ItemView> displayProjectionByMatchingTitle(String words) {

 FullTextSession ftSession = SessionHolder.getFullTextSession();
 org.apache.lucene.search.Query luceneQuery =
 buildLuceneQuery(words, Item.class);

 FullTextQuery query = ftSession.createFullTextQuery(
 luceneQuery, Item.class);

 List<Object[]> results = query
 .setProjection("ean", "title")
 .list();

 List<ItemView> endResults = new ArrayList<ItemView>(results.size());
 for (Object[] line : results) {
 endResults.add(
 new ItemView(
 (String) line[0],
 (String) line[1]
)
);

Listing 6.16 Projecting specific properties

Property is
stored in indexB

Set the projected
properties

C

Build object from
projection arrayD

190 CHAPTER 6 Querying with Hibernate Search
}
return endResults;
}

Projected properties must be stored in the index and use a two-way bridge (all built-in
bridges are two-way) B. Contrary to nonprojected queries that return objects, each
returned element is an array of objects D. Each entry in the array corresponds to the
projected property defined by fullTextQuery.setProjection()C in the same index
position. If a property is not present for a given result, its index is set to null. The
same API is also available on org.hibernate.search.jpa.FullTextQuery.

 Projection is also the preferred mechanism to provide metadata associated with
the matching Lucene document. The following special fields are available:

■ FullTextQuery.THIS—Returns the managed object.
■ FullTextQuery.DOCUMENT—Returns the Lucene Document object.
■ FullTextQuery.SCORE—Returns the document score for the given search.
■ FullTextQuery.ID—Returns the object identifier.
■ FullTextQuery.DOCUMENT_ID—Returns the Lucene Document id.
■ FullTextQuery.OBJECT_Class—Returns the object class
■ FullTextQuery.EXPLANATION—Returns the Lucene Explanation object for this

document.

THIS returns the object that would have been returned had projection not been used.
It is useful for retrieving metadata along with the managed object. This operation
will retrieve information from the persistence context. Listing 6.16 is an example of
such a usage.

 DOCUMENT returns the plain Lucene Document object. This is particularly useful
when using some Lucene-specific features not (yet) integrated into the Hibernate
Search ecosystem.

 SCORE returns the relative importance of a document compared to the other docu-
ments for that particular query. A score can only compare documents within the same
query. Let me say it for the third time: Comparing the score of documents from differ-
ent queries makes no sense. Score is nevertheless a very useful feature because it
emphasizes the relative importance of two documents. Your search engine might pur-
posely decide to ignore all documents whose score is one-tenth that of the most rele-
vant document in order to emphasize quality over quantity. For a long discussion of
score, please refer to chapter 12.

 ID returns the object identifier, its primary key in the database, whereas
DOCUMENT_ID returns the internal Lucene Document identifier. DOCUMENT_ID is quite
useful for interacting with some of the native Lucene APIs.

WARNING A Lucene document id is not stable over time. The optimize operation
among others can redefine a document id.

191Manipulating the result structure
OBJECT_CLASS does return the object type. EXPLANATION returns the Lucene Explana-
tion object for this document and this query. An Explanation object explains why a
given document has been picked up by a query. This is very useful when some results
are puzzling. Be careful, because building an Explanation object is as expensive as
executing the query: For each result, significant work is performed. Project this field if
you’re sure the number of results is limited (or if you have time). Otherwise, use
FullTextQuery.explain(). See listing 6.17 for more information.

 Let’s have a look at a projection using some of these metadata fields (listing 6.17).

public List<ItemView> displayProjectionAndMetadataByMatchingTitle(String
➥words) {

 FullTextSession ftSession = SessionHolder.getFullTextSession();
 org.apache.lucene.search.Query luceneQuery =
 buildLuceneQuery(words, Item.class);

 FullTextQuery query = ftSession.createFullTextQuery(
 luceneQuery, Item.class);

 @SuppressWarnings("unchecked")
 List<Object[]> results = query
 .setProjection(
 "ean",
 "title",
 FullTextQuery.SCORE)
 .list();

 List<ItemView> endResults = new ArrayList<ItemView>(results.size());
 for (Object[] line : results) {
 ItemView itemView = new ItemView(
 (String) line[0],
 (String) line[1],
 (Float) line[2]);
 endResults.add(itemView);
 }
 return endResults;
}

B Metadata is projected along with regular properties using their constant placehold-
ers. C Score is available at the expected position.

 Some might complain that playing with Object[] as a returned element is not the
easiest thing on earth. As a matter of fact, in listing 6.16 we convert the Object[] into
an ItemView object manually. Hibernate Search allows you to transform the structure
before returning it by the query.

6.6 Manipulating the result structure
One common use case for projection is to display two or three fields of the matching
results and expose them as view objects. A view object is a read-only object used to
convey data from the backend layer to the frontend layer for display. Typically, the

Listing 6.17 Projecting metadata fields

Project the
document score

B

Retrieve the
document score

C

192 CHAPTER 6 Querying with Hibernate Search
view object structure is different from the raw domain model structure (some aggrega-
tion or preparation is performed on fields, and so on).

 Hibernate Search queries let you transform the projection’s Object[] structure
into the structure of your choice by providing a ResultTransformer API. This API has
two methods; the most interesting one is transformTuple, which takes the Object[]
and returns the structure of your choice. Listing 6.18 demonstrates a ResultTrans-
former returning a Map<String, Object> containing the property name projected as
a key and the property value as a value. A ResultTransformer instance can be set on a
FullTextQuery (based on the Hibernate Core or Java Persistence API).

public class ProjectionToMapResultTransformer implements ResultTransformer {

 public Object transformTuple(
 Object[] tuple,
 String[] aliases) {

 Map result = new HashMap(tuple.length);
 for (int i = 0; i < tuple.length; i++) {
 String key = aliases[i];
 if (key != null) {
 result.put(key, tuple[i]);
 }
 }
 return result;
 }

 public List transformList(List collection) {
 return collection;
 }
}

List<Map<String, Object>> results = fullTextQuery
 .setProjection("ean", "title")
 .setResultTransformer(
 new ProjectionToMapResultTransformer()
)
 .list();

B transformTuple() takes the Object[] returned by a regular projection query and
the associated aliases and returns the data in a different structure. B The Query
instance is configured with the ResultTransformer object.

 Two ResultTransformer objects that are quite useful are provided by Hibernate
out of the box:

■ AliasToBeanResultTransformer
■ AliasToBeanConstructorResultTranformer

The first one injects projected properties into the setter of the same name (or the
field of the same name). The second one injects projected properties through a spe-
cific constructor. See listing 6.19.

Listing 6.18 ResultTransformer converting Object[] into a Map<String,

Method called
for each resultB

Attach the result
transformer

C

193Manipulating the result structure

public class ItemView {
 private String ean;
 private String title;

 public String getEan() {
 return ean;
 }
 public String getTitle() {
 return title;
 }

 public float getScore() {
 return score;
 }
}

public List<ItemView>
displayProjectionUsingResultTransformerByMatchingTitle(String words) {

 FullTextSession ftSession = SessionHolder.getFullTextSession();
 org.apache.lucene.search.Query luceneQuery =
 buildLuceneQuery(words, Item.class);

 FullTextQuery query = ftSession.createFullTextQuery(
 luceneQuery, Item.class);

 @SuppressWarnings("unchecked")
 List<ItemView> results = query
 .setProjection("ean", "title")
 .setResultTransformer(
 new AliasToBeanResultTransformer(ItemView.class)
)
 .list();
 return results;
}

B Field names (or setters) match the property names projected; the projected values
are stored in their respective field or getter in ItemView. C The ResultTransformer
instance is passed to the query; the query now returns a List<ItemView>.

WARNING Objects built by a ResultTransformer are not managed by the persis-
tence context.

Hibernate provides additional ResultTransformers that can be found in the
org.hibernate.transform package, but this interface is meant to be implemented by
applications to fit their needs. Don’t limit yourself to the list of built-in ones.

 We’ve just shown how to adjust the object-retrieval process and especially how to
retrieve a custom structure from a projection query. Stepping back, it would be nice to
customize the order in which objects are returned to us. Read on.

Listing 6.19 Using AliasToBeanResultTransformer to populate a view object

Projected property
matches the attribute

B

Attach the result
transformer

C

194 CHAPTER 6 Querying with Hibernate Search
6.7 Sorting results
By default, objects returned by a full-text query are provided by descending score: The
most relevant object is returned first. While this will satisfy your needs in most cases,
returning objects ordered by one or several properties is sometimes more pertinent
for your user. You can do that with Hibernate Search.

 Sort is applied to the Lucene query (on the value stored in Lucene fields) rather
than to the database query. To order using a database query, Hibernate Search
would need to read and extract the identifiers for all matching documents (poten-
tially millions!) and create an SQL query from them. This would be very inefficient
in most cases.

 Hibernate Search delegates the sort operation to Lucene. Fields used for the sort
have one restriction: They must use either one of these two indexing strategies:
Index.UN_TOKENIZED or Index.NO_NORMS. Remember, you can map the same object
property multiple times: once to build a sortable field, once to build a searchable field
(see section 3.3.4). More than once you will index a field specifically for sorting, even
if you’re not interested in searching by it.

 Sort is described by a Lucene Sort object, which contains the list of fields to sort
by, each field sort being represented by a SortField object. Let’s look at a simple
example in listing 6.20. Each field must be indexed but not tokenized.

@Entity
@Indexed
public class Item {

 @Id @GeneratedValue
 @DocumentId
 private Integer id;

 @Fields(
 {@Field(index=Index.TOKENIZED, store=Store.YES),
 @Field(name="title_sort",
 index=Index.UN_TOKENIZED),
 })
 @NotNull @Length(max=100)
 private String title;

 @Field
 @Length(max=5000)
 private String description;

 @Field(index=Index.UN_TOKENIZED, store=Store.YES)@Length(max=16)
 private String ean;
 ...
}

public List<String> displayAllByMatchingTitleOrderedBy(String words, OrderBy
orderBy) {

 org.apache.lucene.search.Query luceneQuery =
 buildLuceneQuery(words, Item.class);

Listing 6.20 Sorting results by a set of fields

Properties untokenized
can be sortedB

C
Properties untokenized

can be sorted

195Sorting results
 FullTextSession ftSession = SessionHolder.getFullTextSession();

 FullTextQuery query = ftSession.createFullTextQuery(
 luceneQuery, Item.class);

 Sort sort = null;
 switch (orderBy) {

 case EAN:
 SortField sortField =
 ➥new SortField("ean", SortField.STRING);
 sort = new Sort(sortField);
 break;

 case TITLE_THEN_EAN:
 SortField[] sortFields = new SortField[2];
 sortFields[0] = new SortField("title_sort", SortField.STRING);
 sortFields[1] = new SortField("ean", SortField.STRING);
 sort = new Sort(sortFields);
 break;

 default:
 assert sort == null : "Unknown OrderBy." + orderBy;
 }

 query.setSort(sort);

 @SuppressWarnings("unchecked")
 List<Item> items = query.list();

 List<String> results = new ArrayList<String>();
 for (Item item : items) {
 StringBuilder itemInString = new StringBuilder("Item ")
 .append(item.getTitle())
 .append(" (").append(item.getEan()).append(")");
 results.add(itemInString.toString());
 }
 return results;
}

B A sortable version of title is indexed in title_sort in the field UN_TOKENIZED. C
ean is already sortable. D A SortField object takes the field name and the sort style.
E Sort receives the SortField objects; the order in which they are provided to Sort
is significant. F You can sort by multiple fields. You can sort by title_sort, and for
identical title_sort values you can sort by ean. G Sort is associated with the Full-
TextQuery object.

 The sort algorithm differs slightly depending on the property type. Each Sort-
Field can define its type. The available types are:

■ SortField.INT—Integer comparator
■ SortField.LONG—Long comparator
■ SortField.FLOAT—Float comparator
■ SortField.DOUBLE—Double comparator
■ SortField.STRING—String comparator
■ SortField.CUSTOM—Custom comparator

Sort by
ean

Build a SortFieldD

Wrap it in a SortESort by title,
then by ean Multiple sort

fields are possible
F

Assign Sort to
the query

G

196 CHAPTER 6 Querying with Hibernate Search
WARNING Lucene supports SortField.AUTO, which determines the type based
on the first result. The authors recommend against using it because it
can have unintended consequences. What if the first result looks like
an int but turns out to be a long or a String?

Sorting by field is not free. In order to sort data, Lucene needs to load and keep the
field ordering. Lucene uses some tricks to keep ordering for numeric values efficient
in terms of memory usage. String and custom field sorting cannot benefit from these
optimizations. Make sure you test sort on a real dataset and measure memory con-
sumption.

 Beyond field-based sorting, Lucene allows you to sort by score (descending) and
by Lucene document id (ascending), using respectively the following special Sort-
Field instances:

■ SortField.FIELD_SCORE—Sort documents by their score (highest score first).
■ SortField.FIELD_DOC—Sort documents by Lucene document id (lowest first).

Listing 6.21 extends listing 6.20 by supporting sorting by title and score and makes use
of these special fields.

case TITLE_THEN_SCORE:
{

 SortField[] sortFields = new SortField[2];
 sortFields[0] = new SortField("title_sort", SortField.STRING)

 sortFields[1] = SortField.FIELD_SCORE;
 sort = new Sort(sortFields);
 break;
}

B SortField holds two constants, FIELD_SCORE and FIELD_DOC, that can be used to
sort respectively by score and document id.

 If you want to know more about sorting in Lucene, we highly recommend Lucene in
Action, published by Manning. This book has a comprehensive and dedicated section
on the subject. The Sort Javadoc is of great help as well.

 You now have the knowledge required to retrieve the objects you want, sorted in
the order of your choice, but we haven’t yet described what part of the object graph is
loaded and how.

6.8 Overriding fetching strategy
By default, Hibernate Search uses the standard fetching strategy defined in your map-
ping. Associations won’t be loaded when they’re marked as lazy. When an association
is marked as eager, the fetching strategy defined in your mapping is used (join, subse-
lect, select). In some cases, your application code will want to navigate through associ-
ations marked as lazy in an efficient manner.

Listing 6.21 Sorting results using field types and score

Sort by title and for
equal titles by EAN

Sort by score
after titleB

197Overriding fetching strategy
 You can override the fetching strategy used to load objects from the persistence
context in a full-text query. This is critical for avoiding both of the following:

■ LazyInitializationException; for example, during the rendering view
■ Any performance issue; for example, facing the famous n+1 problem

If you know the application needs to navigate through a certain object path, it’s more
efficient to load the graph up front. You define the fetching strategy in Hibernate
Search by passing to the FullTextQuery object a Hibernate Core Criteria query (see
listing 6.22).

public List<String> displayItemAndDistributorByMatchingTitle(String words) {

 org.apache.lucene.search.Query luceneQuery =
 buildLuceneQuery(words, Item.class);
 FullTextSession ftSession = SessionHolder.getFullTextSession();

 FullTextQuery query = ftSession.createFullTextQuery(
 luceneQuery, Item.class);

 Criteria fetchingStrategy =
 ftSession.createCriteria(Item.class)
 .setFetchMode("distributor", FetchMode.JOIN);
 query.setCriteriaQuery(fetchingStrategy);

 @SuppressWarnings("unchecked")
 List<Item> items = query.list();

 List<String> results = new ArrayList<String>();
 for (Item item : items) {
 StringBuilder itemInString = new StringBuilder("Item ")
 .append("(").append(item.getEan()).append(")")
 .append(" ").append(item.getTitle())
 .append(" - ").append(
 ➥item.getDistributor().getName());
 results.add(itemInString.toString());
 }
 return results;
}

B The Criteria query must be based on the same entity type used to filter the full-text
query. C Fetching strategies can be overridden, but no restriction should be added to
the Criteria query. D The Criteria query is passed to the FullTextQuery object and
will be used to load objects (instead of the regular fetch strategy based on the static
mapping). E Access to distributor does not trigger a second query because it has
been loaded previously.

 Only a subset of the Criteria API capabilities is available. Be sure to target a single
entity type in createFullTextQuery when overriding the fetching strategy through a
Criteria API. The Criteria query must target this entity type and not apply any restric-
tions; only fetching operators are allowed. FulltextQuery.setCriteriaQuery is avail-
able when using the Java Persistence APIs of Hibernate Search, but be aware that

Listing 6.22 Use a Criteria query to define the fetching strategy.

Create criteria on
targeted entity B

CSet fetching
profile

Set criteria on
full-text queryD

Use preloaded
associationsE

198 CHAPTER 6 Querying with Hibernate Search
Criteria is still a pure Hibernate Core API and requires a Session object to be built.
You can access the Session object underneath a Hibernate EntityManager instance by
using the getDelegate() method: Session session = (Session) entityMan-

ager.getDelegate();. When Java Persistence supports a Criteria-like API, Hiber-
nate Search will likely migrate to it.

WARNING Be sure to use the same entity type for both the Criteria instance and
the full-text query targeted entity. Hibernate Search raises an excep-
tion otherwise.

Some people are tempted to use additional restrictions on the Criteria query injected
into a Hibernate Search query. After all, it would mean restricting the query further
by some additional SQL clauses on top of the Lucene restrictions. This approach has
two major problems: Pagination is no longer respected, and the total number of
results is incorrect.

 Pagination is applied to the Lucene query before loading any object and does not
take into account that objects will be filtered out by the Criteria/SQL restriction. After
pagination is applied, if an object cannot be loaded for a given document (because it
cannot be found by the loading query), it is ignored and not returned in the results.
The list of results seen through pagination is like a gigantic piece of Gruyere: It has
lots of holes, making it practically unusable.

 Likewise, the total number of results is built from the total number of matching
Lucene documents and cannot account for the SQL-based filtering.

 Some Lucene results will puzzle you. Fortunately, there are ways to understand
what’s going on.

6.9 Understanding query results
You know very well that a computer does what we ask it to do, not what we think we are
asking it to do. Likewise, some search results will really surprise you. Fortunately,
Hibernate Search and Lucene give you tools to answer the following questions:

■ Why is this object in the result list?
■ Why is this result higher than another result?

Lucene can generate an Explanation object, which describes how the score has been
computed for a given document (object) in a given query. Remember, the score is
entirely dependent on the query. Using this object is considered a fairly expert tech-
nique by the Lucene community and is not especially user friendly. But it can be an
invaluable tool when you have to understand what’s going on. The Explanation object
roughly describes which term matches and in which Lucene field, and for each term it
gives the associated score.

 You can have access to this information in three ways.
 In the search screen of Luke, you can navigate through the list of matching docu-

ments. For a given document, you can click the Explain button, which will expose a

199Summary
text version of the Explanation object. This approach is useful when you test your
Lucene queries.

 From a given FullTextQuery instance, you can call the explain method, passing
the document id of the object for which you want the explanation. Document ids can
be retrieved by using a projection (see section 6.5 for more details). Listing 6.23 shows
how to use the API.

public Explanation explainFirstMatchingItem(String words) {
 FullTextSession ftSession = SessionHolder.getFullTextSession();
 org.apache.lucene.search.Query luceneQuery =
 buildLuceneQuery(words, Item.class);

 FullTextQuery query = ftSession.createFullTextQuery(
 luceneQuery, Item.class);

 @SuppressWarnings("unchecked")
 Object[] result = (Object[]) query
 .setProjection(
 FullTextQuery.DOCUMENT_ID,
 FullTextQuery.THIS)
 .setMaxResults(1)
 .uniqueResult();

 return query.explain((Integer) result[0]);
}

Finally, you can ask Hibernate Search to project the Explanation object for all match-
ing documents by using query.setProjection(FullTextQuery.EXPLANATION);. This
approach is not recommended unless you know that the number of matching docu-
ments is limited (by using pagination, for example). Building an Explanation object is
as expensive as executing the Lucene query.

 By reading chapter 12, you’ll have a much better understanding of the Explana-
tion object. We use it extensively to explain how a score is computed. You can also
check Lucene in Action, which has a nice section on the subject.

6.10 Summary
This chapter taught you how to write Hibernate Search queries. These queries are
totally integrated into the Hibernate Core or Java Persistence programmatic logic in
the following ways:

■ The same query APIs are used.
■ Objects returned by full-text queries are regular Hibernate managed objects,

allowing transparent navigation through lazy loaded associations and state syn-
chronization between the object and the database (and the Lucene index).

You now have a good understanding of what is happening when a Hibernate Search
query is executed. The Lucene query is executed first, then pagination is applied, and
the necessary objects are loaded from the persistence context as efficiently as possible

Listing 6.23 Retrieve the Explanation object for a given document id

Retrieve the
document id

Explain a given
document

200 CHAPTER 6 Querying with Hibernate Search
based on their relative Documents returned by Lucene. You’ve seen ways to execute
queries and their use cases, and you’ve seen how to use pagination and the total num-
ber of results to increase both performance and user feedback in the search engine.
We also explored projection, a feature that allows us to return a couple of properties
rather than a full managed object and how, thanks to ResultResolvers, we can trans-
form the returned objects to match application needs. Finally, we explored how to
sort data by fields rather than by relevance and how to customize the fetching strategy
of matching objects to increase application performance.

 You know how, from a full-text question, to retrieve matching objects in a way that
suits your application without a paradigm shift compared to traditional HQL queries.
In chapter 7 you’ll discover how to express this full-text question by writing the ade-
quate Lucene query.

Writing a Lucene query
You’ve purchased something online. Maybe it’s a book or clothing from a depart-
ment store with an online presence. Your order is a week overdue, so you go back
to the website to check its status, but you’ve misplaced the order number. You call
the contact number and are told, “I’m sorry, I can only look up your order if you
can give me your Order ID.” Oh-oh, does this sound familiar?

 These all-or-nothing database-style searches are quickly being overtaken by the
search techniques we discuss in this book. These much more flexible methods can
query for a document where the title contains Wright Brothers and the body contains
bicycle. Just about any way you can think of searching for something can be con-
verted into a data query.

This chapter covers
■ Parsing and the QueryParser syntax
■ The QueryParser and user-friendly query entry
■ Tokenization and analyzers
■ Lucene’s base Query classes
201

http://java.sun.com/j2se/1.4/docs/api/java/lang/String.html
http://java.sun.com/j2se/1.4/docs/api/java/lang/String.html
http://java.sun.com/j2se/1.4/docs/api/java/lang/String.html
http://java.sun.com/j2se/1.4/docs/api/java/lang/String.html
http://java.sun.com/j2se/1.4/docs/api/java/lang/String.html
http://java.sun.com/j2se/1.4/docs/api/java/lang/String.html

202 CHAPTER 7 Writing a Lucene query
 Information indexing is a standard, rigid process, but querying that gathered
information can be performed in myriad ways. This process and the building of these
queries is the subject of this chapter.

 We’ll begin by studying the QueryParser, how it parses expressions and allows for
user-friendly queries and the syntax it generates from our queries. Understanding this
syntax is important when you run into problems. What could possibly be wrong if you
query for a person’s last name such as Smith-Jones and obtain no results when you’re
positive the name exists in the index?

 Then we’ll move on to a discussion of analyzers and how they extract and manipu-
late queries. Finally, we’ll look at the types of queries that are provided out of the box
and how to use and manipulate them for our needs.

 Parsing an expression is the process of analyzing a sequence of tokens—in Lucene’s
case, words—and transforming them into some predefined data structure suitable for
later processing. Lucene contains the class org.apache.lucene.queryParser.Query-
Parser which performs this function through its parse(String query) method.

 The output of this method can be anything from a single-term expression to a
complicated phrase depending on the complexity of the query. Before we get into
parsing too deeply, it’s important to understand the syntax that the parser generates
in these phrases. This will help you understand why things turn out the way they do
and point out what changes may be necessary.

 The next section introduces the query parser syntax. For a full discussion of it refer
to the document located at lucene_install_directory/docs/queryparsersyntax.html. Also
remember that Manning’s Lucene in Action is an excellent additional reference for the
various discussions in this chapter.

7.1 Understanding Lucene’s query syntax
Let’s face it. Queries can be as simple as a single word and as complicated as a multi-
word, nested Boolean expression with a range query added on, and so on, up to the
limits of your imagination. A semi-mathematical style of notation can make things a
little easier to understand, and that’s what Lucene uses. A small set of special charac-
ters can convey a lot of information accurately.

 Understanding the query syntax is of the utmost importance if you’re going to
troubleshoot a query that didn’t produce expected results. Is the problem in the
index or the query? You don’t want to waste time barking up the wrong tree.

 Our old friend Luke, introduced in chapter 2, is excellent for showing exactly how
your entered query will be parsed into a Lucene-usable expression and is an outstand-
ing troubleshooting tool for use with query parsing. We’ll be utilizing it here to dem-
onstrate parsing, and we recommend you use it often when developing so you have a
minimum of surprises.

http://java.sun.com/j2se/1.4/docs/api/java/lang/String.html

203Understanding Lucene’s query syntax
7.1.1 Boolean queries—this and that but not those

Lucene and Hibernate Search support the use
of the Boolean operators AND, OR, and NOT. The
equivalent shorthand notation for these is +
for AND, - for NOT, and no symbol for OR. If you
use the word syntax, the operators must be in
uppercase. Table 7.1 contains some examples.

 Figure 7.1 shows Luke’s interpretation of
the equivalent of the first query from table 7.1
(the AND query).

 Notice three things here (if you haven’t looked at the Luke explanation in
chapter 2 yet, this would be a good time to do so). First, we didn’t have to enter the
field name for the titanic term because the default field is set to title and that’s the
field we’re looking in for that term. Second, after we clicked Update, the title field-
name was inserted for us. Third, because we used the AND Boolean operator in the
query, meaning both terms are required for the query to be successful, the + sign was
prepended to both terms.

Table 7.1 A comparison of Boolean word
syntax and shorthand syntax

Word syntax Shorthand syntax

a AND b +a +b

a OR b a b

a NOT b +a –b

Figure 7.1 Luke’s equivalent interpretation of the first query from table 7.1 (a AND b)

http://java.sun.com/j2se/1.4/docs/api/java/lang/String.html
http://java.sun.com/j2se/1.4/docs/api/java/lang/String.html
http://java.sun.com/j2se/1.4/docs/api/java/util/Map.html
http://java.sun.com/j2se/1.4/docs/api/java/util/Map.html

204 CHAPTER 7 Writing a Lucene query
The second query from table 7.1 (the OR query) is shown in figure 7.2, again utilizing
Luke.

 The only real difference between this and figure 7.1 is that the + signs have been
removed from the parsed query. This means that either the adaptation term or the
titanic term must be present for the query to be successful, but neither term is
required.

 The – (NOT) operator can sometimes get you in trouble if you aren’t careful. Let’s
assume we’re querying a customer name field for the name Evans – Sutherland.
Figure 7.3 shows how Luke interprets this query.

 Surprise! What is this - (minus) sign doing here? The – (dash) was interpreted as
the NOT Boolean operator. This could cause trouble because it has absolutely nothing
to do with what we were looking for.

Figure 7.2 Luke’s equivalent interpretation of the second query from table 7.1 (a OR b)

205Understanding Lucene’s query syntax
How do we get around this problem with – (dash and not minus)? All special characters
must be escaped by using the \ character. Let’s try this in Luke and see what happens.
Figure 7.4 shows our escaped – (dash) and the result of our search.

 Our search expression now has the escaped special character as \, and it was
parsed correctly as title:evans title:Sutherland. We’ll talk about programmatically fix-
ing this problem shortly and explain how to accomplish this escaping in section 7.3.1.
A complete list of the characters considered special characters is given there as well.

NOTE We cannot emphasize enough that analyzers greatly affect how the query
string is interpreted. Depending on the analyzer chosen, the – (dash)
may be completely removed from the query.

The next query type is the WildcardQuery, which uses two special characters in differ-
ent ways to allow searching for many combinations of characters easily.

Figure 7.3 Luke’s interpretation of a query for evans – sutherland showing that the - (dash) doesn’t
always behave as you’d expect and can sometimes be misinterpreted as the – (NOT) operator.

206 CHAPTER 7 Writing a Lucene query
7.1.2 Wildcard queries

Lucene contains two characters that are considered wildcards. What are wildcards?
Wildcards match any characters in an index entry. Two special characters are used to
represent them: the ? (question mark) and the * (asterisk). The ? represents any sin-
gle character in a query. For example,

 ?atch matches batch or match or catch

The single-character wildcard ? can be used more than once in a query. For example,
 t??t matches test, text, and toot

The * character matches any one or more characters. For example,
 came* matches camera or cameron or camel or cameo

The QueryParser class has a setter method setAllowLeadingWildcard(Boolean
allowLeadingWildcard) that turns on the ability to utilize leading wildcards in queries.

WARNING The authors recommend against using leading wildcards in queries
unless they are absolutely necessary. Even then, we recommend you
rethink your application logic. Leading wildcards can cause almost
geometric performance degradation with index size—the larger the
index size, the more degradation there is. Be careful, and test and
quantify everything!

Figure 7.4 Escaping the special character to prevent it from interfering with our query

207Understanding Lucene’s query syntax
An additional query type that comes from the WildcardQuery is the PrefixQuery.
When a term ends in the * wildcard character, such as a query for titan*, it’s automat-
ically converted to a PrefixQuery. This is done for you by the QueryParser, which will
automatically rearrange terms into various query types as it sees fit.

 Next up is the PhraseQuery. With this query type you can search for multiple terms
in a specified order or degree of closeness.

7.1.3 Phrase queries

You’re not limited to querying specific terms in Lucene. A PhraseQuery, also known
as a proximity search, allows a query with more than one term in the same field. You can
do this in two ways. One way is a literal search, which places the terms inside a set of
quotation marks in the order you want them queried. For example,

name: "portsmouth england"

This queries for the two terms portsmouth and england as stated, in that order and next
to one another.

 A second way is known as a proximity query, which uses the ~ (tilde) character to
express a slop factor. This slop factor expresses how far apart the terms in the phrase
can be from one another and still be returned as a result to the query. For example,

name: "titanic iceberg"~5

This query states that if the terms titanic and iceberg are within five words of one
another, it is a query match.

 Let’s revisit figure 7.3. In that figure the query was "evans – sutherland", with
spaces on both sides of the dash, resulting in a term search of –title:Sutherland (a
NOT query). Now look at figure 7.5. If the spaces are removed, the query is parsed to
the phrase query "evans sutherland". The query parser no longer sees the – as a NOT.
The analyzer has removed the - sign in this case and treated the entered terms as a
phrase query.

 One more point: If the query had been "evans_sutherland", the query would
again be parsed to "evans sutherland" The analyzer would again remove the _ in
this case and treat the entered terms as a phrase query. We’re going to say it again. We
hope you realize that it’s extremely important to understand exactly what’s going on
when parsing and what effect the chosen analyzer has on your data. Not knowing
exactly what you have to work with makes it difficult to solve problems.

 Is it possible to query with terms that the user just happened to misspell and still
find relevant results? Yes, it is, when you use a FuzzyQuery. This is the topic of the next
section, and those of you who may have been wondering what this fuzzy phenomenon
is all about will find this an interesting discussion.

208 CHAPTER 7 Writing a Lucene query
7.1.4 Fuzzy queries—similar terms (even misspellings)

In looks only, a fuzzy query is similar to the proximity query we’ve discussed. It utilizes
the ~ (tilde) character, and it’s followed by a numeric value, but that’s where the simi-
larity ends. Here’s an example of a fuzzy query:

name: portsmouth~0.8

The only visible difference between this query and the proximity query that’s plainly
noticeable is the use of a float value after the ~ (tilde) character. In fuzzy queries this
value can range between 0.0 and 1.0, and it’s known as the minimumSimilarity. Its
meaning will become clear in a minute.

 Fuzzy queries make use of what is called the Levenshtein distance. This distance is
defined as the minimum number of operations needed to transform one string into
the other. An excellent discussion of this algorithm is Levenshtein Distance, in Three Fla-
vors by Michael Gilleland, located at http://www.merriampark.com/ld.htm#FLAVORS.
This website also contains the source code for the algorithm in three languages: Java,
C++, and Visual Basic.

Figure 7.5 The – (dash) with no spaces between it and the surrounding words is interpreted as a
phrase query.

http://www.merriampark.com/ld.htm#FLAVORS

209Understanding Lucene’s query syntax
 Here’s an example. The Levenshtein distance between kitten and sitting is 3, since
three edits change one into the other, and there’s no way to do so with fewer than
three edits:

1 kitten→ sitten (substitution of s for k)
2 sitten → sittin (substitution of i for e)
3 sittin → sitting (insert g at the end)

While the Levenshtein distance uses an integer to represent the number of necessary
edits, Lucene’s fuzzy query specifies how similar two terms must be for them to satisfy the
query criteria of a match. In other words, a minimumSimilarity of 1.0 means the same
thing as an exact term match, and as its value decreases toward 0.0, the more edits are
allowed to see if a match occurs. Be advised that as you decrease the value of the min-
imumSimilarity, you drastically increase the number of query matches, and on first
glance some of the results may not seem to be related to the query at all (and they
probably are not).

 The authors have found that a minimumSimilarity value (the float value after the
tilde (~)) ranging from 0.70 to 0.80 gave decent results when used in our queries, but,
as always, this depends on the application. You’ll have to experiment with this one
until you’re satisfied.

 An alternative approach to fuzzy-style queries was detailed in sections 5.2.3 and
5.2.4. There we used n-gram queries and Soundex-type queries. You should experi-
ment with both of these along with fuzzy queries to determine which is a best fit for
your particular application.

 Our next QueryParser syntax example is the RangeQuery. We’ll discuss one of
the problems with RangeQuerys resulting from the fact that all Lucene fields are
string values.

7.1.5 Range queries—from x TO y

Range queries are those types of queries that allow you to search for results between two
values. Two types of brackets and the keyword TO (must be uppercase) are used to
specify a query of this type. Here’s an example:

dateEntered: [20080112 TO 20080201]

This query is looking for all index documents where the value in the dateEntered field
is between 12 January 2008 and 1 February 2008. The use of square brackets here
causes the date boundaries to be included in the query. If you wanted the boundary

Hibernate Search dates
When you index an object in Hibernate Search and that object contains a Date prop-
erty, you have the ability to specify the minimum resolution to use when storing the
date. In this example you’d specify @DateBridge(resolution=Resolution.DAY).

210 CHAPTER 7 Writing a Lucene query
dates to be excluded from the query, you’d use { } (curly brackets). You cannot have
one of each. That is, you cannot have one square bracket and one curly bracket in the
same query. If you try it, you’ll generate an exception. Querying for dateEntered:
[20080112 TO 20080201} generates this exception:

org.apache.lucene.queryParser.ParseException: Cannot parse '[20061201 TO
20010101}': Encountered "<EOF>" at line 1, column 22. Was expecting:
"]" ...

Range queries are not limited to dates. Strings can be used also. For example,

lastname: [shutt TO weatbrook]

This queries for all last names between shutt and weatbrook, inclusive, as a lexico-
graphic range.

 Range queries on numeric values have additional problems. All field values in
Lucene are strings; string representations of numeric values of different length
appear in a different order than you would at first expect. For example, 10 comes
before 2 because the strings are looked at character by character and not by value.
One additional processing step, called padding, is necessary to get the strings to the
same length. That is, the 2 would be changed to 02. That way 02 comes before 10.
We’ll talk about this more in a later section of this chapter and show you how to
accomplish it utilizing a Hibernate Search bridge as we did in section 4.1.1.

 The last syntax topic is how to utilize a boost factor. This rearranges results so that
certain specified characteristics bring some results closer to the top of the returned
documents than they would be if they didn’t have these characteristics.

7.1.6 Giving preference with boost

It is sometimes desirable to rearrange the order in which results are returned. Results
are returned in scoring order, which means that the closer a result matches a query,
the higher its score; therefore it returns closer to the top of the results.

 You can manipulate this position somewhat by applying a boost factor to some char-
acteristic of the query. A boost factor is denoted by the ^ (caret) symbol followed by a
multiplying factor. For example, suppose we want to query on two fields: title and
description. We want to search title for titanic and description for spielberg, but we want
the title field matches to be twice as important in the final results. Here’s how to
accomplish this:

title:titanic^2 description:spielberg

This causes the score for the title term to be multiplied by a boost factor of 2 so that
results matching title:titanic will be more relevant, and therefore higher in the
results, than those matching just description:spielberg.

 By default, the boost factor is 1. Although the boost factor must be positive, it can
be less than 1 (for example, 0.2). A less-than-1 boost factor causes matching results to

211Understanding Lucene’s query syntax
be pushed farther down in the results. We discuss this in greater detail in
section 13.1.2. Also, a negative boost factor can be applied programmatically. Refer to
the sidebar in section 3.4.2.

 Now that you have a grasp of the syntax of the QueryParser, our last topic of dis-
cussion is controlling exactly how our query syntax is executed. When multiple query
types are involved, the order of execution becomes critical.

7.1.7 Grouping queries with parentheses

Lucene allows the order of execution of queries to be modified to allow finer control
of how we want our query to be executed. Also, it allows expressions to be grouped
not only to improve the readability of the query expression but also to perform multi-
ple operations on one field without having to enter a lot of expressions. The following
two sections show how to use parentheses to accomplish this.
CONTROLLING THE ORDER OF EXECUTION

If you remember your math foundations, the solution to an equation can be com-
pletely changed by the use of parentheses. Take the following equation, for example:

3 * 2 + 5 = 11

If we change the order of calculations, the answer is different:

3 * (2 + 5) = 21

Parentheses can change the order of evaluation with queries also. Let’s use the follow-
ing two pieces of data as our index contents:

“From The Terminator to Titanic, you can always rely on writer-director
James Cameron”

“In The Terminator the future is determined by the past”

 Now look at the following two queries executed on this data.

Terminator AND future OR Cameron
Terminator AND (future OR Cameron)

Hibernate Search Boost
Boost is supported at both the class level and the field level. For example, either or
both of the following are allowed:

@Entity
@Boost(2.0F)
public class Essay {
…
@Field(index=Index.TOKENIZED, store=Store.YES)
@Boost(2.5f)
public String getSummary() {

212 CHAPTER 7 Writing a Lucene query
Since the first query has no parentheses, the order of execution is from left to right.
Terminator is ANDed with future to find the second index value; then this is ORed with
Cameron, which has no additional effect since the second result doesn’t contain Cam-
eron. The second index value is the final result.

 When we execute the second query, because parentheses are present, the order of
query execution has been changed. First, future is ORed with Cameron, yielding both
index values as the result. Then these values are ANDed with Terminator, making the
final result equal to both index values.
GROUPING EXPRESSIONS

Parentheses are also used to group expressions not only to reduce the amount of typ-
ing that you have to do but also to improve query readability. Look at the following
query:

+contents:terminator actor:hanks actor:jones –contents:titanic

This query is not impossible to figure out, but is this not much more readable?

contents:(+terminator –titanic) actor:(hanks jones)

Parentheses can be utilized as needed to group terms immediately following the field
name and separator : (colon). By the way, have you figured out what we’re querying
for with this expression? This query is asking for all index entries where the contents
field contains terminator AND not titanic AND the actor field contains hanks OR jones.
That’s enough about syntax. Hopefully these examples have demonstrated what
parentheses can do for you.

 Be sure to read the API documentation for the few query types that we didn’t cover
here.

 Before we move on to the topic of tokenization and analyzers, let’s look at the
QueryParser class itself. This class translates a user-entered query and translates it into
the syntax that we’ve talked about up to this point.

7.1.8 Getting to know the standard QueryParser and ad hoc queries

Ad hoc queries are the "user-friendly” queries of Lucene. Users enter one or more
terms to query an index, and they receive their answer back. From their point of view,
that’s all that happens. As we know, much more is involved than that. Let’s take a look
at the QueryParser class and the important parts of its API.

NOTE The QueryParser class is the backbone of ad hoc query generation. This
is the class that converts the user-entered query terms into a Query that
contains the syntax that the search engine is expecting.

The QueryParser class itself is generated by the Java parser/scanner generator JavaCC
(Java Compiler Compiler™). The grammar file QueryParser.jj, used to generate the
class, is included in Lucene’s source code, should you wish to examine it.

213Understanding Lucene’s query syntax
 The most important method in its API is parse(String). This method takes a
query string and returns an org.apache.lucene.search.Query built from it. The
query string is all of the different symbols that we have covered up to this point in the
chapter: +, -, *, ^, and all the others. For those of you familiar with Backus-Naur nota-
tion, the official definition of the query string is

Query ::= (Clause)*
 Clause ::= ["+", "-"] [<TERM> ":"] (<TERM> | "(" Query ")")

If you’re not familiar with this notation, don’t worry. Stick to the syntax we’ve shown
to this point, and you’ll not have a problem. Let’s work some examples of the parse
method with varied query strings and discuss a few of the other API methods that you
may come in contact with. The example parsings are given in listing 7.1.

public class TestQueryParserQueryGeneration
{
 public void testQueryParser() throws Exception {

 String queryString = "The Story of the Day";
 QueryParser parser =
 new QueryParser("title",
 new StandardAnalyzer());
 Query query = parser.parse(queryString);
 assert query.toString().equals(
 ➥"title:story title:day");

 queryString = "The Story of the Day";
 parser = new QueryParser("title",
 new SimpleAnalyzer());
 query = parser.parse(queryString);
 assert query.toString().equals(
 ➥ "title:the title:story title:of title:the title:day");

 queryString = "Story*";
 parser =
 new QueryParser("title", new StandardAnalyzer());
 query = parser.parse(queryString);
 assert query.toString().equals("title:story*");

 queryString = "Story~0.8 Judgement";
 parser =
 new QueryParser("title", new StandardAnalyzer());
 parser.setDefaultOperator(QueryParser.
 Operator.AND);
 query = parser.parse(queryString);
 assert query.toString().equals(
 ➥"+title:story~0.8 +title:judgement");
 }
}

Listing 7.1 Several examples of query strings and their equivalent parsed queries

Build query
for title field

Generated query for
StandardAnalyzer

Use
SimpleAnalyzer

Generated
query

Build wildcard
(Prefix) query

As expected,
nothing changed

Create compound
query with
FuzzyQuery

Set default
operator to ANDB

Require both
terms now

214 CHAPTER 7 Writing a Lucene query
Additional API methods you may need to become familiar with are:

■ static String escape(String s) Returns a string where those characters that
QueryParser expects to be escaped are escaped by a preceding \. We discuss
this in greater detail in section 7.3.1.

■ setAllowLeadingWildcard(boolean allowLeadingWildcard) False by default;
set this to true to allow leading wildcard characters. The authors gave a warning
about allowing this and the problems it may cause in section 7.1.2.

■ void setDefaultOperator(QueryParser.Operator op) The default mode is
QueryParser.Operator.OR, with which terms without any modifiers (+ -) are
considered optional. This can be set to QueryParser.Operator.AND, which
causes terms without any modifiers (+ -) to be required. Examine B in
listing 7.1.

WARNING The QueryParser class is not thread-safe! It’s your responsibility to
ensure that when multiple threads access it, they behave themselves. It
has a drawback as well. The QueryParser cannot reproduce the syntax
of all the query types available with the Lucene/Hibernate Search API.
Examples of this problem are the many different types of SpanQuerys,
which can query in many different ways. An example is finding all doc-
uments where the phrase “white star” is near the phrase “Portsmouth,
England.” Boolean ANDed PhraseQueries can approximate this, but
they have no concept of nearness.

So how does a pile of unorganized information start to become an organized search-
able index? That’s our next focus of attention. Let’s start by reviewing some of the
topics that were introduced in chapters 3 and 4, so that these idioms are fresh in
your mind.

7.2 Tokenization and fields
A document unit (this is not the Document class of Lucene) is the initial piece of infor-
mation that we wish to enter into an index. It could be the text of a book, a summary
of a book, a paragraph, or even a sentence—in short, any information that is index
capable and searchable for our purposes. Our first step is to assemble these document
units; after assembling them, we’ll place each unit into a field or property.

7.2.1 Fields/properties

A field (Lucene) or property (Hibernate Search) is the basic container from which
documents are composed. Fields hold the tokens/terms that are queried against. A
field name followed by a colon followed by a term makes up a basic query, for exam-
ple, description:adaptation. This is exactly what we were looking at with Luke in
the first few figures of this chapter, so this should be a review of what we talked about
then. Figure 7.6 shows Luke with this query.

215Tokenization and fields
In figure 7.6 B is the query we entered. After we clicked the Update button, our query
was parsed and shown C. This is the most basic type of query, one term on one field,
so there are no surprises here. Notice D the default field is set to title. This required us
to enter the field name of the field we were querying. If the default field had been set
to description, then the field name and colon would not have been necessary.

 Once we have our fields/properties assembled, we need to put them through a
process called tokenization.

7.2.2 Tokenization

Tokenizing is the task of chopping a document unit into pieces, called tokens, perhaps
at the same time throwing away certain characters such as punctuation marks. We can
even throw away whole words. These words are known as stop words and are common
words that are unlikely to help determine the relevance of a document against a
query. Words such as the, an, or, but, and so on are often defined as stop words but do
not necessarily have to be. Although the usage is not strictly correct in the informa-
tion-retrieval world, for our purposes term and word are synonymous, and we’ll use
these two idioms interchangeably.

 Analyzers perform the act of tokenizing a document unit. Let’s look at them next.

Figure 7.6 Luke querying the description field for the term adaptation

216 CHAPTER 7 Writing a Lucene query
7.2.3 Analyzers and their impact on queries

As you’ve seen, analyzers generate tokens from document units. They perform more
than tokenization. They can filter out the stop words we mentioned. They can convert
all input to lowercase, filter all numeric input, or generate the stems of the query
terms or a list of synonyms, and so on. In fact, if you write your own analyzer, it can
process input text into anything you want.

 Figure 7.7 is an example of tokenization where the analyzer does not convert terms
to lowercase. Some analyzers are designed to do this conversion automatically.

Lucene comes with many analyzer classes and filter classes to process input text in a
variety of ways as an index is built. These classes are contained in the
org.apache.lucene.analysis package. An analyzer that is used quite often is the
StandardAnalyzer in the org.apache.lucene.analysis.standard package.
Recently, this analyzer has been significantly improved speedwise.

 Hibernate Search also supports the Apache Solr analyzers. Solr is an open source
enterprise search server based on Lucene; the project home page is located at http://
lucene.apache.org/solr/. The Solr analyzer jar apache-solr-analyzer.jar contains an
incredibly varied selection of filters that can be utilized in the manner explained in
section 5.3.2.

 We want to take a minute here and discuss analyzers and the care you should take
when working with them. That’s the topic of our next section.

7.2.4 Using analyzers during indexing

In section 5.3 we covered analyzers and filters in detail. After reading this section you
should be able to chain filters and attach them to analyzers in such a way that you can
accomplish just about any kind of analysis. Look back at section 5.3.2 specifically to
review how easy it is to chain filters utilizing the @Analyzer and @AnalyzerDefs anno-
tations. You should keep some things in mind when applying analyzers during index-
ing and searching.

Figure 7.7 Tokenizing document unit input

http://lucene.apache.org/solr/
http://lucene.apache.org/solr/

217Tokenization and fields

Oddities of analyzers: breaking the golden rule
In section 3.5 we saw that one of the synonym filter strategies involved copying all
synonyms in the token stream instead of only the initial word. This strategy means
that a query no longer has to care about synonyms: if either one of the synonyms is
present in the query, the document will match. In this particular case, this filter
should not be applied to the query. It would simply make the query less efficient and
less accurate.

To work around this problem, follow these simple steps:

1 Declare an @AnalyzerDef similar to the @AnalyzerDef used to index the field
containing synonyms, but remove the SynonymFilter. This will ensure tokens
are processed in the same way except for the synonym’s expansion. Let’s
name this analyzer definition query-synonyms.

2 Retrieve the analyzer from Hibernate Search defined for a specific entity:
searchFactory.getAnalyzer(ScopedEntity.class).

3 Retrieve the query-synonyms analyzer from Hibernate Search by name:
searchFactory.getAnalyzer("query-synonyms").

4 Create a Lucene PerFieldAnalyzerWrapper analyzer, passing the scoped
analyzer in the constructor and adding the query-synonyms analyzer on the
field containing the synonyms.

Here’s a code snippet showing this process:

@AnalyzerDefs({
 @AnalyzerDef(name="synonyms",
 tokenizer = @TokenizerDef(factory =
 StandardTokenizerFactory.class),
 filters = { @TokenFilterDef(factory =
 StandardFilterFactory.class),
 @TokenFilterDef(factory =
 StopFilterFactory.class,
 params = @Parameter(name="words",
 value="stopwords.txt")),
 @TokenFilterDef(factory =
 SynonymFilterFactory.class,
 // expand all synonyms in the token stream
 params = @Parameter(name="expand",
 value="true"))
 }
),

 @AnalyzerDef(name="query-synonyms",
 tokenizer = @TokenizerDef(factory =

StandardTokenizerFactory.class),
 filters = { @TokenFilterDef(factory =

StandardFilterFactory.class),
 // synonym filter is removed

218 CHAPTER 7 Writing a Lucene query
Let’s take a more detailed look at the @Analyzer annotation described in
section 3.4.1.

 When Hibernate Search indexes data, it allows you to place analyzers at three dif-
ferent points in your code. The @Analyzer annotation states:

@Target({ ElementType.TYPE, ElementType.FIELD, ElementType.METHOD})

For this discussion we’re concerned with the first two items, TYPE and FIELD (METHOD
would simply apply to a getter method of a field). You can place an analyzer on an
individual field of an entity (ElementType.FIELD). This implies that different analyz-
ers can easily be placed on different fields of the same entity. You can also assign an
analyzer to an entity, in which case the analyzer applies to all fields (except those that
specify an analyzer at the field level). The ScopedEntity class in listing 7.2 demon-
strates this.

@Entity
@Indexed
@Analyzer(impl = StandardAnalyzer.class)
public class ScopedEntity {

Listing 7.2 Applying different analyzers to an entity and a field in the same entity

Oddities of analyzers: breaking the golden rule (continued)

 @TokenFilterDef(factory = StopFilterFactory.class,
 params = @Parameter(name="words",
 value="stopwords.txt"))
 }
)
})
public class ScopedEntity {
 @Fields({@Field(name="field3"),
 @Field(name="field3-synonyms",
 analyzer=@Analyzer(definition="synonyms"))})
 private String field3;
 ...
}

Analyzer scopedEntityAnalyzer =
 searchFactory.getAnalyzer(ScopedEntity.class);
Analyzer querySynonymsAnalyzer = searchFactory.getAnalyzer("query-

synonyms")
PerFieldAnalyzerWrapper queryAnalyzer = new

PerFieldAnalyzerWrapper(scopedEntityAnalyzer);

queryAnalyzer.addAnalyzer(“field3-synonyms”, querySynonymsAnalyzer);

You can use the PerFieldAnalyzerWrapper instance to build your query. All default an-
alyzers will be used except for the specific synonym field, which will use query-
synonyms.

Apply the analyzer
to the entity

219Tokenization and fields
 @Id
 @GeneratedValue
 @DocumentId
 private Integer id;

 @Field(index = Index.TOKENIZED, store = Store.YES)
 private String field1;

 @Field(index = Index.TOKENIZED, store = Store.YES)
 @Analyzer(impl = WhitespaceAnalyzer.class)
 private String field2;
…

This allows for an extremely high degree of flexibility while building your indexes.
The one thing the authors want to emphasize, though, is that when you query an index
that was built with a specific analyzer, unless you really know what you’re doing, you should
employ the identical analyzer when querying. This guarantees that expectations concerning
the data you’re querying are valid and there will be no surprises. This gremlin really
rears it ugly head in the case of punctuation. Read the Javadoc of the
org.apache.lucene.analysis.standard.StandardTokenizer class for an example
of exactly what this tokenizer does. It could cause you problems if you’re not aware
that it was employed to index the data you’re querying.

 How do we get around this problem? As of this writing, with Lucene you’re out of
luck. Either you have to know which analyzer was used to create the index via docu-
mentation, or the index creator could store the analyzer class type somehow, some-
where, so that it can be retrieved and reused. Hibernate Search, on the other hand,
allows you to retrieve at query time which analyzer was employed at index time.

 We’ll get to how Hibernate Search does this in just a minute, but first we want dem-
onstrate how to manually apply an analyzer to a query. You never know when this will
come in handy.

7.2.5 Manually applying an analyzer to a query

Some query types allow the application of an analyzer out of the box. At the same
time, many more queries don’t allow it. This section demonstrates how to apply an
analyzer to a query by taking a query string and manually applying a StandardAna-
lyzer analyzer to it. This enables you to apply whatever analyzers you wish to a mul-
tifield query and combine them into a BooleanQuery query. Listing 7.3 shows how to
do this.

public class TestManualAnalyzer {
 public void testManualAnalyzer() throws Exception {

 String search = "The Little Pony";

 Reader reader = new StringReader(search);

 Analyzer analyzer = new StandardAnalyzer();

Listing 7.3 Manually applying an analyzer to a query

Override the
entity analyzer
for this field

Build query
from this string

Generate a
reader for the
Analyzer streamB

220 CHAPTER 7 Writing a Lucene query
 TokenStream stream =
 analyzer.tokenStream("title", reader);

 Token token = new Token();

 token = stream.next(token);

 BooleanQuery query = new BooleanQuery();
 while (token != null) {
 if (token.termLength() != 0) {

 String term = new String(token.termBuffer(),
 0,
 token.termLength());
 //add it to the query by creating a TermQuery
 query.add(new TermQuery(new Term("title", term)),
 ➥BooleanClause.Occur.SHOULD);
 }
 token = stream.next(token);
 }
 assert query.toString().equals(
 ➥"title:little title:pony"):
 ➥"incorrect query generated";
 }
}

Because analyzers need input in the form of a Reader, we create one B for our input
string. With this reader we can generate a TokenStream C and retrieve the first token
from it D. We create the first term by creating a copy of the contents of the term buf-
fer E. This way we can safely reuse the token. With this term we create a new Term-
Query and add it to the BooleanQuery as the first clause F.

 We’ve jumped the gun a little at F by programmatically creating an instance of a
BooleanQuery before we discussed it. If you have a problem understanding it, hang in
there because we talk about that in the next section. We’re sure you’ll understand it by
the end of that section.

 We then get the next token and loop until the token stream is exhausted G; H
asserts that the query equals "title:little title:pony".

 Now for what we talked about at the end of section 7.2.4, the fact that Hibernate
Search allows you to retrieve at query time which analyzer was employed at index time.

 When you use separate analyzers per field to build an index, Hibernate Search
provides a ScopedAnalyzer. The org.hibernate.search.util.ScopedAnalyzer class
keeps track of all the analyzers specified in an entity and allows you to recall them as
needed. An analyzer specified on all entities through the configuration specification
is known as a global analyzer. In the event no explicit analyzer exists for a particular
field, the global analyzer is returned.

 The next section contains an example of the ScopedAnalyzer and a discussion of
when to use it and when not to.

Instantiate a
TokenStreamC

Grab the first tokenD

Create a term
from the token

E

Build a
TermQuery

F

Grab the next
token and loopG

Assert the
generated queryH

221Tokenization and fields
7.2.6 Using multiple analyzers in the same query

Once we retrieve the analyzers that were used to build the query, how do we employ
them so that they can be applied to their individual fields as needed during a query? If
you use the QueryParser to build your query—and that is a big if—the ScopedAna-
lyzer class will automatically apply the specified analyzer to its matching field. Every-
thing will be taken care of without the need for any intervention on your part.

 If you chose not to use the query parser, you’re on your own, sort of. The Scoped-
Analyzer class is your friend in this case.

 Why did we say, “sort of”? Because you must manually implement the appropriate
analyzer on your query. Listing 7.4 gives an example utilizing the ScopedEntity class
from listing 7.2.

public class TestAnalyzerWrapper extends SearchTestCase {
 @Test
 public void testScopedAnalyzer() throws Exception {
 FullTextSession session =
 Search.getFullTextSession(openSession());
 Transaction tx = session.beginTransaction();

 buildIndex(session, tx);

 try {
 SearchFactory searchFactory =
 session.getSearchFactory();

 FullTextQuery hibQuery =
 buildQuery(searchFactory, "field2", session);
 List<ScopedEntity> results = hibQuery.list();

 assert result.size() == 0:
 "incorrect result count";

 assert hibQuery.toString().equals(
 "FullTextQueryImpl(+field2:TEST)"):
 "incorrect query";

 hibQuery = buildQuery(searchFactory, "field1", session);

Listing 7.4 Applying individual analyzers

SearchTestCase
Listing 7.4, along with almost all of the tests in chapters 11, 12, and 13 and the re-
maining tests in this chapter, inherit from the SearchTestCase class. This class pro-
vides several utility methods used in the tests. SearchTestCase also inherits from
HsiATestCase, and this class also provides several methods such as buildSes-
sionFactory and configure.

The individual test classes will override the methods in these two superclasses as
needed to perform the tests.

Zero results after
field2 search

B

First generated
query string

C

222 CHAPTER 7 Writing a Lucene query
 results = hibQuery.list();

 assert result.size() == 0:
 "incorrect result count";

 assert hibQuery.toString().equals(
 "FullTextQueryImpl(+field1:TEST)"):
 "incorrect query";

 for (Object element :
 session.createQuery("from "
 + ScopedEntity.class.getName()).list())
 session.delete(element);
 tx.commit();
 }
 finally {
 session.close();
 }
 }

 private FullTextQuery buildQuery(SearchFactory factory,
 ➥String field, FullTextSession session) throws IOException {

 Reader reader = new StringReader(”TEST”);

 TokenStream stream =
 factory.getAnalyzer(ScopedEntity.class)
 .tokenStream(field, reader);
 BooleanQuery bq = new BooleanQuery();

 Token token = new Token();
 token = stream.next(token);

 while (token != null) {
 if (token.termLength() != 0) {
 String term =
 new String(token.termBuffer(),
 0,
 token.termLength());

 bq.add(new TermQuery(new Term(field, term)),
 BooleanClause.Occur.MUST);
 }
 token = stream.next(token);
 }
 return session.createFullTextQuery(bq,
 ➥ScopedEntity.class);
 }

 private void buildIndex() {
 tx = session.beginTransaction();

 ScopedEntity entity = new ScopedEntity();
 entity.setField1("test field1");
 entity.setField2("test field2");
 session.save(entity);

 entity = new ScopedEntity();
 entity.setField1("test field3");
 entity.setField2("test field4");

Two results after
field1 searchD

Second generated
query string

E

TokenStream from
ScopedAnalyzer

F

Get the first tokenG

Extract the termH

Add the term to
the BooleanQuery

I

Loop for the
next tokenJ

Return the
complete query1)

223Tokenization and fields
 session.save(entity);

 tx.commit();
 }
}

The results of our first query B of TEST on field2 returned zero results. Looking at C
we see that the generated query string was +field2:TEST. According to listing 7.2 the
ScopedAnalyzer should have applied a WhitespaceAnalyzer to the field during
indexing and during the query. The WhitespaceAnalyzer does not pass its tokens
through a LowercaseFilter, so the query of TEST would have remained uppercase
and therefore would not have found any results. That is exactly what happened; so far,
so good.

 Now the second query D illustrates that the query returned two results for the
query string +field1:test E. The query in this case was lowercased. Examining list-
ing 7.2 again we see that no explicit analyzer was applied to the field1 field. Therefore,
the ScopedAnalyzer would have applied the global analyzer, which is by definition the
StandardAnalyzer. This analyzer does lowercase its tokens, so ScopedAnalyzer works
exactly as we expected. It applied a WhitespaceAnalyzer to field2 and a Standard-
Analyzer to field1.

 Let’s examine how the query was built. A TokenStream is obtained from the Scoped-
Analyzer F. Since the name of the field being analyzed is passed as a parameter, it
allows the ScopedAnalyzer to determine the appropriate context and return the
appropriate analyzer. The first token is retrieved from the stream at G. We use the
next(Token token) method in lieu of the next() method because it is faster. Read the
Javadoc for the org.apache.lucene.analysis.TokenStream.next(Token result).

 We extract the term from the token via the char[] buffer in the token H and
copy it to a new string, so it’s safe to reuse the token. We start building the query I
and loop for more tokens J. Once the tokens are exhausted, we return the com-
pleted query 1).

 As you can see, this requires a fair amount of additional programming, but it guar-
antees that the analyzer used at query time is the same as the one used at index time.
For a thorough treatment of the ScopedAnalyzer API, we recommend that you spend
some time examining the testScopedAnalyzerAPI unit test in org.hibernate.
search.test.analyzer.AnalyzerTest.

 Next we’re going to talk about programmatic custom query generation. This is
the real power of full-text searching. The sky is basically the limit here. You can clean
up user queries before they ever make it to your application’s search engine. You can
split queries in any manner you wish across any number of fields. In short, use your
imagination.

 We’re going to discuss the API version of the queries. When we arrive at the Bool-
eanQuery you’ll finally see how to put these many different types together to form cus-
tom queries exactly as you want them.

224 CHAPTER 7 Writing a Lucene query
7.3 Building custom queries programmatically
It’s not always necessary to use a query parser to generate a query. You can instantiate
a particular type of query and work directly with it. This is usually how search engines
with deep business logic do it, especially when they want to hide search complexity
from the general user. To see the plethora of queries available for your use, look at the
Javadoc for the org.apache.lucene.search.Query class and examine its high num-
ber of subclasses. Be sure to read the individual queries’ documentation, because they
all have different requirements in some form or other.

 In the following sections we’re going to examine several different types of queries
and see them in action. They are:

■ TermQuery
■ PhraseQuery
■ WildcardQuery
■ PrefixQuery
■ FuzzyQuery
■ RangeQuery
■ BooleanQuery

Along the way we’ll clean up some of the loose ends left over from previous code
examples that we told you to wait for until we got to this part of the chapter. We’ll start
with the simplest and arguably the most common of these, the TermQuery. But first
let’s look at a troubleshooting aid that can save you a lot of time.

7.3.1 Using Query.toString()

When we were using Luke, we received instant gratification on exactly how the query
parser interpreted our query when we clicked the Update button. How can we do this
while we’re developing our applications, and can this help us improve them over time?

 The Query interface specifies two toString methods.
■ String toString() This outputs the query in the same format as the examples

we discussed in section 7.1. We use this in log entries as a troubleshooting aid.
■ abstract String toString(String field) This outputs the query in the

same way as the previous method except that field is considered the default
and is omitted from the result. This is similar to the search expression we
entered in figure 7.1.

NOTE In all of the following sections of this chapter, the examples will have a
call to the Query.toSting() method to illustrate how the query was
parsed and what’s being sent to the Lucene engine.

An additional use of the toString methods is to help with data mining from your log
files. The output of these methods in addition to a count per unit time of entries and
time-of-day data can tell you a lot about what’s going on in your application and what
your users are looking for.

225Building custom queries programmatically
7.3.2 Searching a single field for a single term: TermQuery

The basic building block of queries is the term query. One of the first operations car-
ried out by any class that extends the Query class is to reduce a given query to the
simplest form possible via the rewrite method. The vast majority of queries can
almost always be broken down into one or more series of term queries utilizing the
QueryParser syntax you learned throughout section 7.1. For example, a PrefixQuery
will be rewritten into a BooleanQuery that consists of TermQuerys. We’ll show this hap-
pening in the section on the PrefixQuery, which comes along shortly.

 We used the TermQuery in listing 7.3, but we’ll take the time to explain it a little
further here. Let’s look at an example of a basic TermQuery in listing 7.5.

public class TestTermQuery extends SearchTestCase {

 String[] descs = new String[]{"he hits the road
 ➥as a traveling salesman",
 "he's not a computer salesman",
 "a traveling salesman touting the wave of the future",
 "transforms into an aggressive, high-risk salesman",
 "a once-successful salesman"};

 @Test
 public void testTermQuery() throws Exception {
 FullTextSession session =
 Search.getFullTextSession(openSession());
 Transaction tx = session.beginTransaction();

 try
 {
 buildIndex(session, tx);
 String userInput = "salesman";

 tx = session.beginTransaction();
 Term term = new Term(“description”, userInput);
 TermQuery query = new TermQuery(term);

 System.out.println(query.toString());

 org.hibernate.search.FullTextQuery hibQuery =
 session.createFullTextQuery(query, Dvd.class);
 List<Dvd> results = hibQuery.list();

 assert results.size() == 5 : "incorrect hit count";
 assert results.get(0).getDescription()
 .equals("he's not a computer salesman");

 for (Dvd dvd : results) {
 System.out.println(dvd.getDescription());
 }

 for (Object element : session.createQuery("from " +
 ➥Dvd.class.getName()).list()) session.delete(element);
 tx.commit();
 }

Listing 7.5 Utilizing a TermQuery to search for “salesman”

Create a Term
to search for

B

Generate a TermQuery
from the TermC

226 CHAPTER 7 Writing a Lucene query
 finally {
 session.close();
 }

 private void buildIndex(FullTextSession session, Transaction tx) {
 for (int x = 0; x < descs.length; x++) {
 Dvd dvd = new Dvd();
 dvd.setDescription(descs[x]);
 dvd.setId(x);
 session.save(dvd);
 }
 tx.commit();
 session.clear();
 }
}

description:salesman

he's not a computer salesman
a once-successful salesman
he hits the road as a traveling salesman
a traveling salesman touting the wave of the future
transforms into an aggressive, high-risk salesman

Notice that we’ve introduced a new class in addition to TermQuery. The Term class B
takes a field name and a string to search for. It is then passed to the TermQuery con-
structor C to create the query.

 This example should illustrate why most queries are reduced to sets of TermQuerys.
After all, queries are nothing more than a series of single terms. The generated query
syntax is shown at D.

 Before we cover the use of several of the individual query-generation classes, let’s
discuss an important topic that can help with anticipating the text users enter in que-
ries. This important topic is utilizing regular expressions to make sure that what users
enter as a query is really what they intended to enter.
SPECIAL CHARACTERS

With applications there’s no way to anticipate what a user will enter as the text of a
query. Toward the end of section 7.1.1 we discussed the problem with the – (dash)
character being misinterpreted as a Boolean NOT operator. You cannot expect the
users of your application to know and understand that they will have to escape dashes
with a backslash (that just won’t happen). Well, surprise, it is not just the – character
you will have to consider escaping.

 Lucene uses several special characters to go about normal everyday tasks, and, as
we’ve shown in section 7.1.1, these could be misinterpreted if they were used as is in
queries. Table 7.2 shows a list of those characters.

 How can we escape these special characters in our application when we have no
control over how users enter their query strings? Listing 7.6 is one example of how to
accomplish this. Feel free to use this code as you see fit in your applications. If you’re
running a Java version earlier than 1.5, the QueryParser class supplies a method that
accomplishes the same results: public static String escape(String s).

Generated
query syntax

D

227Building custom queries programmatically

private static final String[] SPECIALS =
 new String[]{
 "+", "-", "&&", "||", "!", "(", ")", "{", "}",
 "[", "]", "^", "\"", "~", "*", "?", ":", "\\"
 };

 protected String escapeSpecials(String clientQuery)
 {
 String regexOr = "";
 for (String special : SPECIALS)
 {
 regexOr += (special
 .equals(SPECIALS[0]) ? "" : "|") + "\\"
 + special.substring(0, 1);
 }
 clientQuery = clientQuery
 .replaceAll("(?<!\\\\)(" + regexOr + ")",
 "\\\\$1");
 return clientQuery.trim();
 }

We start B by defining the special characters in a String array. In the loop at C we
build our regular expression. In this case the expression string is

\+|\-|\&|\||\!|\(|\)|\{|\}|\[|\]|\^|\"|\~|*|\?|\:|\\

As you’d expect, this is each of the special characters preceded by the escape character
\ and separated from the next special character by the | (OR) character. The meat of
the code is D. The String.replaceAll() java method steps through the client-
Query string and replaces any of the special characters it finds with that special

Table 7.2 Special characters and their interpretation

Special
character

Where it is used
Special

character
Where it is used

+ shorthand for AND [inclusive lower bound

- shorthand for NOT] inclusive upper bound

&& additional shorthand for AND ^ term boost

|| additional shorthand for OR “ phrase query delimiter

! additional shorthand for NOT ~ proximity query slop factor
fuzzy query minimumumSimilarity

() grouping parentheses * multicharacter wildcard

{ exclusive lower bound ? single-character wildcard

} exclusive upper bound : fieldname/term delimiter

\ escape character

Listing 7.6 Programmatically escaping special characters from user-entered queries

Define the
special
charactersB

Build the
regex stringC

Substitute escaped
characters for specialsD

228 CHAPTER 7 Writing a Lucene query
character preceded by \. With a clientQuery of "comment: first : line", the result
would be "comment: first \: line".

Now let’s examine how to query across several fields.

7.3.3 MultiFieldQueryParser queries more than one field

The QueryParser class was designed to perform ad hoc queries on a single field, but
what do you do if what the user entered is supposed to query across more than one
field? For example, your application could have several drop-down boxes where the
user selects field names and query types for each of these, or your application hides
this complexity from your user and targets, transparently, several fields, choosing dif-
ferent boost levels (weight) for each. That’s where the MultiFieldQueryParser class
comes in. It was custom-made for just such a situation.

 MultiFieldQueryParser is a subclass of QueryParser and as such it inherits its
methods. This means that it also has the factory methods necessary to generate the
many different types of queries that were listed in the previous section. Moreover, it has
additional static parse methods that are the heart and soul of the class. They are:

■ static parse(String[] queries, String[] fields, Analyzer analyzer)
■ static Query parse(String[] queries, String[] fields,

BooleanClause.Occur[] flags, Analyzer analyzer)
■ static Query parse(String query, String[] fields,

BooleanClause.Occur[] flags, Analyzer analyzer)

It’s important that you understand the differences between these methods because
they look similar but behave differently.

 The first parse method accepts an array of query strings and an array of fields plus
an analyzer. These arrays function as parallel arrays. That is, query[0] applies to
field[0], query[1] applies to field[1], and so on up to query[n] applying to field[n].
When this static method is called to generate a query, all of these queries are limited
to being ORed together. This is rather restrictive. What if we wanted to utilize the
parser to AND or maybe even NOT a query in the same set of queries? That’s where the
other two parse methods come in.

The regex expression
For those of you who really want to know how the regular expression works and are
not quite sure, it uses negative look behind on each of the characters in the client-
Query. This look behind examines each character and rejects any that are already
preceded by a \ character and continues to the next character. If the character is not
already preceded by a \ and it matches any of the expressions in the regexOr string,
the expression is substituted for the character, so : becomes \:.

229Building custom queries programmatically
 The second parse method accepts the query and field arrays just like the first one
did, but it also accepts another array of type BooleanClause.Occur that determines
whether queries are ANDed, Ored, or NOTed. Therefore, all bases are covered with the
addition of this third array. Section 7.3.6 will have an example of these Boolean-
Clause.Occur types.

 The third and final parse method is almost exactly like the second one except that,
since it has only one query instead of an array of them, that query is applied across all
the fields specified in the array of field names.

 Figure 7.8 shows an admittedly simplistic screen that could be used to gather the
description and title terms that are utilized in listing 7.4. This should give you a frame
of reference as to what we’re trying to demonstrate in the listing.

An example of the MultiFieldQueryParser class in listing 7.7 demonstrates the first
listed parse method.

public class TestMultiField extends SearchTestCase {
 String[] titles = new String[]{"The Nun's Story",
 "Toy Story", "The Philadelphia Story", "Toy Story 2",
 "Ever After - A Cinderella Story",
 "Dodgeball - A True Underdog Story",
 "The Miracle Maker - The Story of Jesus",
 "Films of Faith Collection", "Dragonfly"};
 String[] descs = new String[]{"", "", "", "", "", "", "",
 "Fred Zinneman's epic The Nun's Story",
 "Belief gets us there explains nun Linda Hunt"};

 @Test
 public void testMultiFieldQueryParser() throws Exception {
 FullTextSession session =
 Search.getFullTextSession(openSession());
 Transaction tx = session.beginTransaction();

Listing 7.7 Utilizing the MultiFieldQueryParser class

Figure 7.8 The example screen that could
possibly gather the data given in listing 7.4

230 CHAPTER 7 Writing a Lucene query
 try {
 buildIndex(session, tx); String query0 = "nun";
 String query1 = "story";
 String field0 = "description";
 String field1 = "title";

 String[] fields = new String[]{field0, field1};
 String[] queries = new String[]{query0, query1};
 tx = session.beginTransaction();

 Query query = MultiFieldQueryParser.parse(queries,
 fields, new StopAnalyzer());
 System.out.println(query.toString());

 org.hibernate.search.FullTextQuery hibQuery =
 session.createFullTextQuery(query, Dvd.class);
 List<Dvd> results = hibQuery.list();

 assert results.size() == 9:
 "incorrect hit count";
 assert results.get(0).getTitle()
 .equals("Films of Faith Collection");

 for (Dvd dvd : results) {
 System.out.println(dvd.getTitle());
 }

 for (Object element : session.createQuery("from " +
 Dvd.class.getName()).list())
 ssession.delete(element);
 tx.commit();
 }
 finally {
 session.close();
 }
 }

 private void buildIndex(FullTextSession session, Transaction tx) {
 for (int x = 0; x < titles.length; x++) {
 Dvd dvd = new Dvd();
 dvd.setTitle(titles[x]);
 dvd.setDescription(descs[x]);
 dvd.setId(x);
 session.save(dvd);
 }

 tx.commit();
 session.clear();
 }
}

description:nun title:story

Films of Faith Collection
Dragonfly
Toy Story
The Philadelphia Story
Toy Story 2
The Nun's Story

Generate
the queries
and fields

B

Call the static
parse methodC

Generated query syntaxD

231Building custom queries programmatically
Ever After - A Cinderella Story
Dodgeball - A True Underdog Story
The Miracle Maker - The Story of Jesus

We start B by creating our field and query strings and generating arrays of these val-
ues. At C we call the static parse method and pass the arrays. This is why we’re limited
to the queries being ORed together. We cannot call the setDefaultOperator method
using this format. The generated query syntax is shown at D.

 The next-simplest query type is PhraseQuery. We look at that in the following
section.

7.3.4 Searching words by proximity: PhraseQuery

Phrase queries, also known as proximity searches, consist of multiple terms surrounded
by quotation marks. They are known as proximity searches because this type of search
allows for intervening terms between the entered search terms. The number of inter-
vening terms, or edit distance, is controlled by what is called the slop factor. The higher
the slop factor, the more terms can appear between the search terms.

 By default, the slop factor is set to 0, meaning that terms in the index must appear
exactly as entered. As an example, if we were searching for a two-term phrase and
didn’t change the slop factor, any results must match the two entered terms exactly in
their entered order. But if we didn’t care in which order they appeared in the result,
the slop factor must be at least 2, since each word must change position in the search.

 Let’s look at an example PhraseQuery in action. First we’ll use an exact match
query, then we’ll increase the slop factor to see what effect it has on the results. The
exact match PhraseQuery is shown in listing 7.8.

public class TestPhraseQuery extends SearchTestCase {
 String[] descs = new String[]{"he hits the road as a
 ➥traveling salesman", "Star Trek The Next Generation",
 "the fifth season of star trek", "to Star Trek fans
 ➥everywhere the stellar second season",
 "a once-successful salesman"};

 @Test
 public void testPhraseQuery() throws Exception {
 FullTextSession session = Search.getFullTextSession(openSession());
 Transaction tx = session.beginTransaction();

 try {
 buildIndex(session, tx);
 String userInput = "star trek";
 StringTokenizer st =
 new StringTokenizer(userInput, " ");

 tx = session.beginTransaction();
 PhraseQuery query = new PhraseQuery();
 while (st.hasMoreTokens()) {
 query.add(new Term(“description”,
 st.nextToken()));
 }

Listing 7.8 Querying for an exact match PhraseQuery

Query in
lowercase

B

Split user input
into distinct terms

C

Generate the
PhraseQuery

D

232 CHAPTER 7 Writing a Lucene query
 System.out.println(query.toString());

 org.hibernate.search.FullTextQuery hibQuery =
 session.createFullTextQuery(query, Dvd.class);
 List<Dvd> results = hibQuery.list();

 assert results.size() == 3: "incorrect hit count";
 assert results.get(0).getDescription()
 .equals("Star Trek The Next Generation");

 for (Dvd dvd : results) {
 System.out.println(dvd.getDescription());
 }

 for (Object element : session.createQuery("from " +
 ➥Dvd.class.getName()).list()) session.delete(element);
 tx.commit();
 }
 finally {
 session.close();
 }
 }

 private void buildIndex(FullTextSession session,
 Transaction tx) {
 for (int x = 0; x < descs.length; x++) {
 Dvd dvd = new Dvd();
 dvd.setDescription(descs[x]);
 dvd.setId(x);
 session.save(dvd);
 }
 tx.commit();
 session.clear();
 }
}

description:"star trek"

Star Trek The Next Generation
the fifth season of star trek
to Star Trek fans everywhere the stellar second season

Since the user has entered a string of terms, we must break them up into individual
terms C by utilizing a StringTokenizer. The PhraseQuery is built by adding each of
the entered words one at a time D as new Terms. Why did we convert the description
field to lowercase before we made the assertion at E? Remember that our index was
created utilizing the StandardAnalyzer, which converts all searchable tokens to lower-
case before they are indexed. Since the tokens are not passed through an analyzer
before being added to the PhraseQuery, we are responsible for not only converting
the assertion to lowercase but also converting the original search string at B.

NOTE Three query types are not passed through analyzers. These are Wild-
cardQuery, PrefixQuery, and PhraseQuery.

The generated query syntax is shown at F.

Check the first
descriptionE

Generated
query syntax

F

233Building custom queries programmatically
 Now let’s do the same query except we’ll add the word season to the query and set a
slop factor of 0.4f to see what we get back as results. This query is shown in listing 7.9.

public class TestPhraseQueryWthSlop extends SearchTestCase {
 String[] descs = new String[]{"he hits the road as a traveling salesman"
 ➥ , "Star Trek The Next Generation",
 "the fifth season of star trek", "to Star Trek fans everywhere
 ➥the stellar second season",
 "a once-successful salesman"};

 @Test
 public void testSloppyPhraseQuery() throws Exception {
 FullTextSession session = Search.getFullTextSession(openSession());
 Transaction tx = session.beginTransaction();

 try {
 buildIndex(session, tx);
 String userInput = "star trek season";
 StringTokenizer st =
 new StringTokenizer(userInput, " ");

 tx = session.beginTransaction();
 PhraseQuery query = new PhraseQuery();
 while (st.hasMoreTokens()) {
 query.add(new Term(“description”, st.nextToken()));
 }
 query.setSlop(4f);
 System.out.println(query.toString());

 org.hibernate.search.FullTextQuery hibQuery =
 session.createFullTextQuery(query, Dvd.class);
 List<Dvd> results = hibQuery.list();

 assert results.size() == 2: "incorrect hit count";
 assert results.get(0).getDescription()
 .equals("the fifth season of star trek");

 for (Dvd dvd : results) {
 System.out.println(dvd.getDescription());
 }

 for (Object element : session.createQuery("from " +
 ➥Dvd.class.getName()).list()) session.delete(element);
 tx.commit();
 }
 finally {
 session.close();
 }
 }

 private void buildIndex(FullTextSession session, Transaction tx) {
 for (int x = 0; x < descs.length; x++) {
 Dvd dvd = new Dvd();
 dvd.setDescription(descs[x]);
 dvd.setId(x);

Listing 7.9 Querying with a PhraseQuery utilizing a slop factor of 4

Write query in
lowercase

B

Set slop factor to 4C

Results are now
not contiguousD

234 CHAPTER 7 Writing a Lucene query
 session.save(dvd);
 }
 tx.commit();
 session.clear();
 }
}

description:"star trek season"~4

the fifth season of star trek
to Star Trek fans everywhere the stellar second season

At B we add the third term, season, to our query and increase the slop factor to 4 at
C. Decreasing the slop factor makes things more strict and results in a lower number
of results returned until eventually no results are returned at all. We have to break up
the assertions D into individual term assertions because there’s no guarantee now
that the query terms will be contiguous in the results. E shows the generated query
syntax.

 We examine the next two queries, PrefixQuery and WildcardQuery, together
because they’re quite similar.

7.3.5 Searching for more: WildcardQuery, PrefixQuery

The PrefixQuery and WildcardQuery are very closely related. In fact the sole differ-
ence between the two query types is that a WildcardQuery can have the wildcards *
and ? anywhere in the query terms, while a PrefixQuery ends with the wildcard
character *.

WARNING Several of Lucene’s query types, including WildcardQuery and Pre-
fixQuery, can generate an exception that is not intuitive to new users.
This is the org.apache.lucene.search.BooleanQuery.TooManyCla-
uses exception. It’s caused by many of the query types eventually
being converted to BooleanQuerys. By default a BooleanQuery allows
1024 clauses and, if this number is exceeded, as it can easily be with
wildcards, the exception is generated. You can increase the default
value by calling the static method BooleanQuery.setMax-
ClauseCount(int maxClauseCount). As a side effect, this will increase
memory usage somewhat. RangeQuerys are also susceptible to this
problem, but Hibernate Search takes care of it. Look at section 8.2.2
for a discussion and solution to this problem.

Let’s look first at an example of a WildcardQuery in listing 7.10 and follow that by
examining a PrefixQuery.

public class TestWildcards extends SearchTestCase {
 private static final String FIELD_NAME = "title";
 String[] titles = new String[]{"The Ice Storm",
 "The Nun's Story", "Toy Story",

Listing 7.10 A WildcardQuery searching for the term “st*or?”

Generated
query syntax

E

235Building custom queries programmatically
 "The Philadelphia Story",
 "Toy Story 2", "Ever After - A Cinderella Story",
 "Dodgeball - A True Underdog Story",
 "The Miracle Maker - The Story of Jesus"};

 @Test
 public void testWildcardQuery() throws Exception {
 FullTextSession session = Search.getFullTextSession(openSession());
 Transaction tx = session.beginTransaction();

 try {
 buildIndex(session, tx); String userInput = "s*or?";

 tx = ssession.beginTransaction();
 WildcardQuery query =
 new WildcardQuery(new Term(“title”,
 userInput));
 System.out.println(query.toString());

 org.hibernate.search.FullTextQuery hibQuery =
 session.createFullTextQuery(query, Dvd.class);
 List<Dvd> results = hibQuery.list();

 assert results.size() == 8: "incorrect hit count";

 for (Dvd dvd : results) {
 assert (dvd.getTitle().indexOf("Story") >= 0
 || dvd.getTitle().indexOf("Storm") >= 0);
 System.out.println(dvd.getTitle());
 }

 for (Object element : session.createQuery("from " +
 ➥Dvd.class.getName()).list()) session.delete(element);
 tx.commit();
 }
 finally {
 session.close();
 }
 }

 private void buildIndex(FullTextSession session, Transaction tx) {
 for (int x = 0; x < titles.length; x++) {
 Dvd dvd = new Dvd();
 dvd.setTitle(titles[x]);
 dvd.setId(x);
 session.save(dvd);
 }
 tx.commit();
 session.clear();
 }
}

title:st*or?

The Ice Storm
Toy Story
The Philadelphia Story
Toy Story 2
The Nun's Story

Instantiating a
WildcardQuery

B

Iterate through
the results

C

The generated
query syntax

D
The list of found
titles

E

236 CHAPTER 7 Writing a Lucene query
Ever After - A Cinderella Story
Dodgeball - A True Underdog Story
The Miracle Maker - The Story of Jesus

We instantiate a WildcardQuery at B, and after querying we iterate through the result
list. We know that either Story or Storm will be in the result list, so we can test for those
C. The generated query syntax is shown at D, and the list of found titles is given at E.

 Next, the PrefixQuery is shown in listing 7.11.

public class TestPrefixQuery extends SearchTestCase {
 String[] titles = new String[]{"Sleepless in Seattle",
 "Moonlighting - Seasons 1 & 2",
 "Song of the Sea",
 "he's not a computer salesman",
 "Friends - The Complete Tenth Season"};

 @Test
 public void testPrefixQuery() throws Exception {
 FullTextSession session = Search.getFullTextSession(openSession());
 Transaction tx = session.beginTransaction();
 buildIndex(session, tx);

 String userInput = "sea";

 tx = session.beginTransaction();
 PrefixQuery query =
 new PrefixQuery(new Term(“title”, userInput));
 System.out.println(query.toString());

 org.hibernate.search.FullTextQuery hibQuery =
 session.createFullTextQuery(query, Dvd.class);
 List<Dvd> results = hibQuery.list();

 assert results.size() == 4: "incorrect hit count";
 for (Dvd dvd : results) {
 assertTrue(dvd.getTitle().indexOf("Sea") >= 0);
 System.out.println(dvd.getDescription());
 }

 for (Object element : session.createQuery("from " +
 ➥Dvd.class.getName()).list()) session.delete(element);
 tx.commit();
 session.close();
 }

 private void buildIndex(FullTextSession session, Transaction tx) {
 for (int x = 0; x < titles.length; x++) {
 Dvd dvd = new Dvd();
 dvd.setTitle(titles[x]);
 dvd.setId(x);
 session.save(dvd);
 }
 tx.commit();
 session.clear();
 }

Listing 7.11 A PrefixQuery searching for the term “sea”

Instantiate a
PrefixQuery

B

Iterate through
the results

C

237Building custom queries programmatically
}

title:sea*

Sleepless in Seattle
Moonlighting - Seasons 1 & 2
Song of the Sea
Friends - The Complete Tenth Season

We instantiate a PrefixQuery at B, and after querying we iterate through the result
list. We know that Sea will be in every part of the result list, so we can test for it C. The
generated query syntax is shown at D, and the list of found titles is given at E.

 Did you notice that, unlike the WildcardQuery, which contained the wildcard char-
acters where we or the user wanted them, the PrefixQuery does not require the *
(asterisk) in the query? You can see, though, that it inserted one for us at D.

 The FuzzyQuery is next, and we’ll also demonstrate a coding tip to enumerate
terms automatically generated by the query.

7.3.6 When we’re not sure: FuzzyQuery

First we’ll look at a typical fuzzy query in listing 7.12, then we’ll show you something
that you’ve probably been wondering about since our discussion of fuzzy queries in
section 7.1.4. Is it possible to examine the list of terms that the FuzzyQuery generates
and uses to search the index for matches?

public class TestFuzzyQuery extends SearchTestCase {
 String[] titles = new String[]{"Titan A.E.",
 "Little Women", "Little Shop of Horrors",
 "The Green Mile", "Somewhere in Time"};

 @Test
 public void testFuzzyQuery() throws Exception {
 FullTextSession session = Search.getFullTextSession(openSession());
 Transaction tx = session.beginTransaction();

 buildIndex(session, tx); String userInput = "title";

 tx = session.beginTransaction();
 FuzzyQuery query =
 new FuzzyQuery(new Term(“title”, userInput),
 ➥0.4f);
 System.out.println(query.toString());

 org.hibernate.search.FullTextQuery hibQuery =
 session.createFullTextQuery(query, Dvd.class);
 List<Dvd> results = hibQuery.list();

 assert results.size() == 5: "incorrect hit count";
 assert results.get(0).getTitle().equals("Titan A.E.");

 for (Dvd dvd : results) {
 System.out.println(dvd.getTitle());
 }

 for (Object element : session.createQuery("from " +

Listing 7.12 FuzzyQuery search for “title” with a minimumSimilarity of 0.4f

Examining the
query syntaxD

Printing the
results

E

Instantiate a
FuzzyQuery

B

238 CHAPTER 7 Writing a Lucene query
 ➥Dvd.class.getName()).list()) session.delete(element);
 tx.commit();
 session.close();
 }

 private void buildIndex(FullTextSession session, Transaction tx) {
 for (int x = 0; x < titles.length; x++) {
 Dvd dvd = new Dvd();
 dvd.setTitle(titles[x]);
 dvd.setId(x);
 session.save(dvd);
 }
 tx.commit();
 session.clear();
 }
}

title:title~0.4

Titan A.E.
Little Women
The Green Mile
Somewhere in Time
Little Shop of Horrors

First, we instantiate a FuzzyQuery B with a very loose minimumSimilarity value of
0.4. Remember, the lower the value, the less strict the matching rules are. By default
the minimumSimilarity value is set to 0.5. The generated query syntax is shown at C,
and the list of fuzzy results is given at D. We’ll revisit this list shortly.

WARNING Be aware that setting the minimumSimilarity to too low a value can
result in responses that don’t seem to fit what the query intended. For,
example reducing it to 0.3f (and having a much larger result set)
would cause the number of results to increase dramatically, and some
of the results would have very little to do with what we’re looking for.
You’ll have to experiment with this to determine the optimal value for
your applications.

So, is it possible to examine the actual search term list generated by a FuzzyQuery?
Yes, but it will take extra work to do it. We need to utilize the FuzzyTermEnum class to
generate an enumeration of terms. From there it’s a simple iteration through the list.
Listing 7.13 shows our use of the FuzzyTermEnum class.

public class TestFuzzyTermEnum extends SearchTestCase {
 String[] titles = new String[]{"Titan A.E.", "Little Women",
 "Little Shop of Horrors",
 "The Green Mile",
 "Somewhere in Time"};

 @Test
 public void testFuzzyQueryEnum() throws Exception {
 FullTextSession session =

Listing 7.13 Enumerating a FuzzyQuery term list with FuzzyTermEnum

Generating the
query syntax

C

Printing the resultsD

239Building custom queries programmatically
 Search.getFullTextSession(openSession());
 Transaction tx = session.beginTransaction();
 try {
 buildIndex(session, tx);
 String userInput = "title";

 tx = session.beginTransaction();
 FuzzyTermEnum termEnum =
 new FuzzyTermEnum(getReader(session),
 new Term("title", userInput), 0.4f);

 System.out.println(termEnum.term().text());

 while (termEnum.next()) {
 System.out.println(termEnum.term().text());
 }

 for (Object element : session.createQuery("from " +
Dvd.class.getName()).list()) session.delete(element);

 tx.commit();
 }
 finally {
 if (termEnum != null) {
 termEnum.close();
 }
 session.close();
 }
 }

 private void buildIndex(FullTextSession session, Transaction tx) {
 for (int x = 0; x < titles.length; x++) {
 Dvd dvd = new Dvd();
 dvd.setTitle(titles[x]);
 dvd.setId(x);
 session.save(dvd);
 }
 tx.commit();
 session.clear();
 }

 private IndexReader getReader(FullTextSession session) {
 SearchFactory searchFactory = session.getSearchFactory();
 DirectoryProvider provider =
 searchFactory.getDirectoryProviders(Dvd.class)[0];
 ReaderProvider readerProvider = searchFactory.getReaderProvider();
 return readerProvider.openReader(provider);
 }
}

title:title~0.4

little
mile
time
titan

We start by instantiating a FuzzyTermEnum B and setting the minimumSimilarity to
the same value as the query in listing 7.12. Next we get the first term by calling the

Instantiate
MyFuzzyQuery

B

Retrieve a
FuzzyTermEnumC

Get the first TermD

Iterate the
remaining TermsE

Close the
enumerationF

240 CHAPTER 7 Writing a Lucene query
termEnum.term().text() method C. We need to do this or we’ll miss the first term.
The remaining terms are retrieved by iterating through the enumeration D. Finally,
we close E the enumeration to release all resources. The list of search terms used by
the FuzzyQuery is shown at F. Compare this list with the generated search result list
at D of listing 7.12. We think now you’ll understand why the results of listing 7.12 are
the way they are.

NOTE In addition to the FuzzyTermEnum class, Lucene includes two other enu-
merator classes that you can utilize in a similar manner. These are the
RegexTermEnum class, which will list search terms generated by regular
expression queries, and the WildcardTermEnum class, which will list
search terms generated by WildcardQuerys. In short, any subclass of the
MultiTermQuery class has the getEnum(reader) method.

The RangeQuery is an excellent way to query dates. It can also be used to search
numeric ranges and even string ranges. In the next section we look at querying
numeric ranges because there’s an inherent problem that needs to be taken care of.

7.3.7 Searching in between: RangeQuery

In our discussion of range queries in section 7.1.5 we discussed the fact that searching
numeric values has problems not shared by date or normal text searches. This is
because Lucene stores all data as strings. String representations of numeric values of
different length appear in a different order than you’d at first expect; 10 comes
before 2, for example, because the strings are looked at character by character and
not by value.

 To help demonstrate this problem the RangeQuery-related listings utilize a simple
class, Num, that consists of a string that holds a number and an int Id.

 Listing 7.14 exposes the ordering problem.

public class TestBadRangeQuery extends SearchTestCase {
 private static final String FIELD_NAME = "number";
 int[] numbers = new int[]{1, 2, 3, 4, 5, 6, 7, 8, 9, 10};

 @Test
 public void testNumericRangeQuery() throws Exception {
 FullTextSession session = Search.getFullTextSession(openSession());
 Transaction tx = session.beginTransaction();

 buildIndex(1000, session, tx);

 try {
 buildIndex();
 Term lower = new Term(”number”, "1");
 Term upper = new Term(”number”, "3");

 tx = session.beginTransaction();
 RangeQuery query = new RangeQuery(lower, upper, true);
 System.out.println(query.toString());

Listing 7.14 Demonstrating the RangeQuery numeric value ordering problem

Our int array
of test dataB

The range
boundaries 1 TO 3

C

A RangeQuery with

Dinclusive terms

241Building custom queries programmatically
 org.hibernate.search.FullTextQuery hibQuery =
 session.createFullTextQuery(query, Num.class);
 List<Num> results = hibQuery.list();

 List<String> numbers = new ArrayList<String>();
 for (Num num : results) {
 numbers.add(num.getNumber() + "");
 System.out.println(num.getNumber());
 }

 assert results.size() == 4:
 "incorrect return count";
 assert numbers.contains("10");

 for (Object element : session.createQuery("from "
 ➥+ Num.class.getName()).list()) session.delete(element);
 tx.commit();
 }
 finally {
 session.close();
 }
 }

 private void buildIndex(int indexStart, FullTextSession session,
 Transaction tx) {
 for (int x = 1; x < numbers.length + 1; x++) {
 Num num = new Num();
 num.setId(x);
 num.setNumber(numbers[x - 1]);
 session.save(num);
 }
 tx.commit();
 session.clear();
 }
}

number:[1 TO 3]
1
2
3
10

We declare our integer data first B, then specify the upper and lower bounds of our
search C. When the index is created, we convert the int data to strings F. Our
RangeQuery with these bounds (true means inclusive) is instantiated D. After the
search is performed, our assertions show E four results and not the expected three.
This is due to 10 being included in the results, as we explained previously. The result
contents are printed at G.

 How do we fix this problem? It will be necessary to make the strings equal in char-
acter length so that when they are compared character by character, 02 is less than 10
and the proper sequence is maintained. This will be necessary when both building the
index and querying it. How do we get these strings to the same length? We pad them
with leading zeros. A custom bridge class that accepts numeric values and returns

The four resultsE

Save as a string to
build indexF

Result contains 10G

242 CHAPTER 7 Writing a Lucene query
padded string representations of the numbers is all we need. Listing 7.15 shows the
utility class named PadNumbers.

public class PadNumberBridge
 implements StringBridge {
 private final int PAD = 5;

 public String objectToString(Object value) {
 if (value == null) return null;
 int num = 0;
 if (value instanceof Integer) {
 num = (Integer) value;
 }
 else {
 throw new IllegalArgumentException("PadNumberBridge.class " +
 ➥"received a non-int type " + value.getClass());
 }
 return pad(num);
 }

 private String pad(int num) {
 String rawInt = Integer.toString(num);
 if (rawInt.length() > PAD)
 throw new IllegalArgumentException(
 " integer too large to pad");
 StringBuilder paddedInt = new StringBuilder(PAD);
 for (int padIndex = rawInt.length();
 padIndex < PAD; padIndex++)
 paddedInt.append("0");
 return paddedInt.append(rawInt).toString();
 }
}

PadNumberBridge utilizes a StringBuilder and a simple loop to prepend the correct
number of zeros to bring all numbers to a uniform length. For example, 213 would
become 00213. Any PAD number length can be used here; just be certain that you use
enough zeros to support your largest numeric value. This example could obviously be
improved upon by not hardcoding the PAD value and possibly passing in the value as a
parameter. This class would then be required to extend ParameterizedBridge. Refer
to section 4.1.3 if necessary.

 Listing 7.16 shows PadNumbers at work. It utilizes a PaddedNum class that differs
from the Num class only in its declaration of the custom bridge on the number field.

public class TestGoodRangeQuery extends SearchTestCase {

 private static final int INDEX_START = 1000;
 int[] numbers = new int[]{1, 2, 3, 4, 5, 6, 7, 8, 9, 10};

 @Test
 public void testNumericRangeQuery() throws Exception {

Listing 7.15 A custom bridge class used to pad numerics during indexing and querying

Listing 7.16 Fixing the problem in listing 7.15 using numeric padding

Pad ints with
preceding zeros

243Building custom queries programmatically
 FullTextSession session = Search.getFullTextSession(openSession());
 Transaction tx = session.beginTransaction();

 try {
 buildIndex(session, tx);

 PadNumberBridge brd = new PadNumberBridge();
 Term lower =
 new Term(”number”,
 brd.objectToString(1));
 Term upper =
 new Term(”number”,
 brd.objectToString(3));

 tx = session.beginTransaction();
 RangeQuery query = new RangeQuery(lower, upper, true);
 System.out.println(query.toString());

 org.hibernate.search.FullTextQuery hibQuery =
 session.createFullTextQuery(query, PaddedNum.class);
 List<PaddedNum> results = hibQuery.list();

 List<PaddedNum> numbers = new ArrayList<PaddedNum>();
 for (PaddedNum num : results) {
 numbers.add(num);
 System.out.println(num.getNumber());
 }
 assert results.size() == 3:
 "incorrect return count";
 assert !numbers.contains("10");

 for (Object element : session.createQuery("from "
 + PaddedNum.class.getName()).list())
 session.delete(element);
 tx.commit();
 }
 finally {
 session.close();
 }
 }

 private void buildIndex(FullTextSession session, Transaction tx) {
 for (int x = INDEX_START;
 x < numbers.length + INDEX_START;
 x++) {
 PaddedNum num = new PaddedNum();
 num.setId(x);
 num.setNumber(numbers[x - INDEX_START]);
 session.save(num);
 }
 tx.commit();
 session.clear();
 }
}

number:[00001 TO 00003]
1
2
3

Pad the query termsB

Result with 10 no
longer present

C

Bridge called on
these numbersD

Results
demonstrating
padding

E

244 CHAPTER 7 Writing a Lucene query
Since we know that numeric values must be padded both when building the index and
when querying, we pad the query data at B; when the built objects are committed,
the bridge will perform D the padding operation. Our assertions at C show that we
now have exactly what we wanted. We have only three result values and 10 is no longer
in the results, which are printed at E along with the query string.

NOTE If you find yourself manually building RangeQuerys often, the authors
recommend that you take a look at the ConstantScoreRangeQuery class.
The reasons for this are explained in the RangeQuery Javadoc. One of
these reasons is speed. The authors have found in tests that the Con-
stantScoreRangeQuery is an order of magnitude faster than the stan-
dard RangeQuery. RangeQuerys built by the QueryParser are
automatically constructed as ConstantScoreRangeQuerys.

Our last query type is the BooleanQuery. The examples given will demonstrate to you
how to utilize it to pull everything together.

7.3.8 A little of everything: BooleanQuery

Querying on various combinations of more than one term or more than one type of
query is the domain of the BooleanQuery. This allows you the freedom to combine
the terms with the AND, OR, and NOT operators we discussed earlier. This does not
mean that you’re limited to utilizing multiple single-term queries as search parame-
ters. You can use any of the other types of queries supported by Lucene as inputs for
Boolean queries. For example, we could have a combination of a PhraseQuery ANDed
with a FuzzyQuery and the result of this combination NOTed with a TermQuery. It is
even possible to have nested BooleanQuerys. That is, any of these types of queries
could actually be another BooleanQuery consisting of other query types. Any combi-
nation is possible.

NOTE Earlier in this chapter we discussed the QueryParser and the queries it
can generate. Remember that these generated queries can also be part of
a complicated BooleanQuery. As we said, the sky is the limit with Bool-
eanQuerys (along with the TooManyClausesException).

To demonstrate how to manipulate the BooleanQuery, we will simplify things and stick
to the use of TermQuerys in our example in listing 7.18. Please note that it’s a simple
matter of replacing any TermQuery with the query type of your choice and making any
necessary changes for that type of query.

 Let’s assume that your application provides three entry points for user query
terms. The first entry point is for the major query term. The second entry point is for
an optional term to look for, and the third entry point is an optional term that must
be excluded from the results. From this description you can see that we have one
required term and two possible optional terms, one of which can exclude results. List-
ing 7.17 shows that BooleanQuerys are not always exactly as you think they should be;
execution order is paramount.

245Building custom queries programmatically

public class TestBooleanQuery extends SearchTestCase {
 private FullTextSession s;
 private Transaction tx;

 private static final String FIELD_NAME = "title";
 String[] titles = new String[]{"The Nun's Story",
 "Toy Story", "The Philadelphia Story",
 "Toy Story 2", “Ever After - A Cinderella Story",
 "Dodgeball - A True Underdog Story",
 "The Miracle Maker - The Story of Jesus",
 "The Office - Season One",
 "Gargoyles - Season Two, Vol. 1"};

 public void testBooleanQuery1() throws Exception {
 FullTextSession session = Search.getFullTextSession(openSession());
 Transaction tx = session.beginTransaction();
 try {
 buildIndex();

 String required = "season";
 String optional = "story";
 String omitted = "complete";

 Term requiredTerm = new Term("title", required);
 Term optionalTerm = new Term("title", optional);
 Term omittedTerm = new Term("title", omitted);

 tx = session.beginTransaction();

 BooleanClause requiredClause =
 new BooleanClause(new TermQuery(requiredTerm),
 BooleanClause.Occur.MUST);

 BooleanQuery query = new BooleanQuery();
 query.add(requiredClause);
 query.add(new TermQuery(optionalTerm),
 BooleanClause.Occur.SHOULD);
 query.add(new TermQuery(omittedTerm),
 BooleanClause.Occur.MUST_NOT);
 System.out.println(query.toString());

 org.hibernate.search.FullTextQuery hibQuery =
 session.createFullTextQuery(query, Dvd.class);
 List<Dvd> results = hibQuery.list();

 assert results.size() == 2: "incorrect hit count";
 assert results.get(0).getTitle()
 .equals("The Office - Season One");
 for (Dvd dvd : results) {
 System.out.println(dvd.getTitle());
 }

 for (Object element : session.createQuery("from " +
 ➥Dvd.class.getName()).list()) session.delete(element);
 }
 finally {
 tx.commit();

Listing 7.17 Performing a BooleanQuery with required and optional terms

Create a
BooleanClause

B

Add the clause
to the query

C

Add the
TermQuerys

D

246 CHAPTER 7 Writing a Lucene query
 session.close();
 }
 }

 private void buildIndex(FullTextSession session, Transaction tx) {
 for (int x = 0; x < titles.length; x++) {
 Dvd dvd = new Dvd();
 dvd.setTitle(titles[x]);
 dvd.setId(x);
 session.save(dvd);
 }
 tx.commit();
 session.clear();
 }
}

+title:season title:story -title:complete

The Office - Season One
Gargoyles - Season Two, Vol. 1

A BooleanQuery can be created in different ways, and this example demonstrates a
couple of them. At B we create a BooleanClause and add it to the query C. Next we
create two TermQuerys and add them D. From this you can see how any query type
could easily be added.

 Hopefully, you immediately noticed the Boolean.Occur terms in the Boolean-
Clause and the query.add() statements. The possible selections for this enumeration
are shown in table 7.3.

Table 7.3 The three Boolean.Occur options and their meanings

Occur operators Meaning

Boolean.Occur.MUST Clauses or queries with this operator must appear in the match-
ing documents.

Boolean.Occur.MUST_NOT Clauses or queries with this operator must not appear in the
matching documents.
NOTE: If a BooleanQuery contains a MUST_NOT clause at
least one MUST or SHOULD clause is also required. It’s not pos-
sible to search for queries that consist of only a MUST_NOT
clause. However, it is possible to simulate the effect of this by
creating a BooleanQuery consisting of your MUST_NOT
clause and another clause consisting of a
MatchAllDocsQuery. This results in all documents being
returned except those you excluded with your MUST_NOT clause.
Obviously, you can easily generate variations of this.

Boolean.Occur.SHOULD Clauses or queries with this operator should appear in the match-
ing documents.
NOTE: If a BooleanQuery has no MUST clauses, one or more
SHOULD clauses that must match a document for the
BooleanQuery to generate results are also required.

Generated
query syntax

E

247Building custom queries programmatically
Let’s take a closer look at the generated query syntax E and compare it with the
results of the query. These results may not have been exactly what some of you were
expecting. A strict interpretation of the syntax would be “the results must have season
or story and not complete.” If that’s the case, where are the results with story? None of
them appeared. The key to this is the Boolean.Occur.MUST operator applied to season.
The way this query was written, the MUST effectively overrides the SHOULD. If a document
does not have the season term, which is required, then no result will be generated for
it, canceling the effect of the SHOULD.

 What you may have been expecting was a disjunction query (OR) of season and
story. To accomplish this, change the Boolean.Occur.MUST to SHOULD when you create
the BooleanClause at B. The syntax and results would then be:

title:season title:story -title:complete

The Office - Season One
Gargoyles - Season Two, Vol. 1
Toy Story
The Philadelphia Story
Toy Story 2
The Nun's Story
Ever After - A Cinderella Story
Dodgeball - A True Underdog Story
The Miracle Maker - The Story of Jesus

Now, story is included in the results. Perhaps this is what you were originally expecting.
The point here is, be careful how you construct your query. Check it, and make sure it’s
really what you wanted.

 One last topic before we close this chapter is the programmatic use of boost to
adjust document scoring.

7.3.9 Using the boost APIs

We discussed utilizing a boost factor in section 7.1.6. Boost can also be managed pro-
grammatically in several places of the API. Listing 7.18 illustrates how Hibernate
Search defines an @Boost annotation.

@Retention(RetentionPolicy.RUNTIME)
@Target({ElementType.TYPE,
 ElementType.METHOD,
 ElementType.FIELD})
@Documented
public @interface Boost {
 float value();
}

B defines a boost value as able to be attached to any of a FIELD, METHOD, or TYPE class,
and it is defined as a float value C.

Listing 7.18 The definition of Hibernate Search’s @Boost annotation

Define on field, getter
method, or class

B

Define as a
float value

C

248 CHAPTER 7 Writing a Lucene query
 An example of a properly annotated Hibernate Search entity with a boost factor
set on the entity itself and one of the getter methods is shown here:

@Entity
@Indexed
@Boost (1.5f)
@Analyzer(impl = Test1Analyzer.class)
public class MyEntity {
 @Id
 @GeneratedValue
 @DocumentId
 private Integer id;

 @Boost(1.2f)
 private String entity;

 @Field(index = Index.TOKENIZED store = Store.YES, boost = 2.0f)
 public String getEntity() {
…

The order of precedence for these boost factors is the field/method boost followed by
the entity boost. The resulting boost for the getEntity method in the example above
would be the product of the @Boost value from the field and the @Field value, or 2.4f.

 In addition to utilizing the @Boost annotation on different parts of an entity,
Hibernate Search has a boost factor available in the @ClassBridge annotation, which
is designated as follows:

@Entity
@Indexed
@ClassBridge(name="branchnetwork",
 index=Index.TOKENIZED,
 store=Store.YES,
 boost=@Boost(2.0f),
 impl = CatFieldsClassBridge.class,
 params = @Parameter(name="sepChar", value=" "))
public class Department {
 private int id;
 private String network;
 private String branchHead;
 private String branch;
…

Lucene provides several ways to apply boost factors to various elements from field-
able objects to documents to various query types. Here’s a list of the ways to set a
boost factor:

■ Fieldable.setBoost(float boost) The Fieldable interface is implemented
by two classes, org.apache.lucene.document.AbstractField and
org.apache.lucene.document.Field, so this is the method to use to set a boost
factor on a field object.

■ Document.setBoost(float boost) This method sets a boost factor for query
matches on any field of a particular document.

249Summary
■ Query.setboost(float b) This method sets a boost factor for a particular
query clause to b. For a single-clause query this doesn’t do you any good, but for
queries with multiple clauses this will cause an increase in the score of docu-
ments that match the boosted clause.

■ MultiFieldQueryParser(String[] fields, Analyzer analyzer, Map
boosts) This constructor allows passing a map with keys of field names and
values of boost factors. Each named field will have the corresponding boost
applied to it.

■ MoreLikeThis.setboost(Boolean b) A little different than what we worked
with so far, this method accepts a Boolean that turns boosting on and off. The
default value is false. Once turned on, boosting is based on the ratio of the
score of a particular document and the top score of the total query results.

7.4 Summary
The QueryParser class gives us a lot to work with when we want the user to be able to
enter free-form text as a query. The syntax it generates to perform searches is not dif-
ficult to learn and is invaluable when it comes to finding out why query results are not
exactly as we expected them to be. An example of this problem is having a – (dash) in
a name. This dash can be interpreted as a Boolean NOT and change the results unex-
pectedly. Luke can come to our rescue by showing us exactly how our query was inter-
preted.

 For more sophisticated search engines where the complexity is hidden from the
user, as in the consumer websites (Amazon, eBay, and Google), you need to fine-tune
your queries and hide the query syntax complexity from the user. Lucene provides a
programmatic API and a plethora of Query classes for us, including the TermQuery,
RangeQuery, FuzzyQuery, WildcardQuery, and BooleanQuery. The latter is usually the
type of query we end up with when queries are rewritten by the system for simplifica-
tion. We can use many combinations of these query types programmatically to create
custom queries that achieve things the QueryParser cannot do by itself.

 These queries can also accomplish other things for us. For example, utilizing the
FuzzyQuery can help eliminate misspelling problems.

The BoostingQuery
One additional query that you should be aware of is the BoostingQuery. This Query
class originally started out in the Lucene sandbox, which is discussed along with the
BoostingQuery class in section 13.1.2. This is why we decided to discuss it there.
It’s an easy way to change the scoring of matching documents and can be made to
work in ways you’re probably not expecting.

250 CHAPTER 7 Writing a Lucene query
 We now know that MultiTermQuerys (wildcard and prefix) are not magic, and it’s
possible to examine the list of terms that they generate by using the various TermEnum
classes that are provided. These terms are combined eventually into a BooleanQuery.

 The order of precedence of specified analyzers from highest to lowest is as follows:

1 @Field analyzer
2 @Entity analyzer
3 The analyzer specified in the configuration via cfg.setProperty(Environ-

ment.ANALYZER_CLASS, Specific Analyzer.class.getName());.
This is known as the global analyzer. It can also be set via the hibernate.prop-

erties or hibernate.cfg.xml files, whichever you use.

The information in this chapter demonstrates that we have many ways to manipulate
queries to provide us the data we’re looking for. We’re limited only by our ingenuity
in how we ask the user for the pertinent query and how we employ what the user gives
us. If you wish to delve deeper into this subject, we recommend Manning Publishing’s
Lucene in Action and digging into the Javadoc and source code of the Query subclasses.

Filters:
cross-cutting restrictions
Full-text queries are great for answering a question formulated by a user. However,
in some situations, you’ll need to add restrictions that don’t belong to the core of
the user question. These are cross-cutting restrictions: restrict by security, restrict by
category, restrict by availability, and so on. This is what a filter is for.

 What is a filter? A filter restricts results of a query after the Lucene query has
been executed, usually based on rules that aren’t directly related to the query. Fil-
ters can be adjusted independently of the original query and don’t affect the rela-
tive score of a document against another; the ordering defined by the original
query is respected. Filters can be applied on top of each other. In Lucene, a filter is
very much like a bit mask, which removes part of the results from a query; each

This chapter covers
■ Configuring and using dynamic filters
■ Caching filters
■ Various filter examples
251

252 CHAPTER 8 Filters: cross-cutting restrictions
Lucene document is represented by a bit, which can be on or off. Figure 8.1 shows
how filters selectively remove elements from the result set.

 Filters offer the ability to apply cross-cutting restrictions on matching elements
returned by queries. Numerous use cases can benefit from cross-cutting restrictions. A
search engine might hide results a given user doesn’t have access to (security filter);
the results might be restricted to a certain period of time (temporal filter); the results
might need to be restricted to a certain category or type of data (category filter).
Think about your last application, and you’ll likely find one or two use cases for filters.

 Let’s explore how filters are implemented in Lucene and what benefits Hibernate
Search brings to the table.

8.1 Defining and using a filter
Nothing prevents you from changing your query to apply additional restrictions and
simulate the behavior of filters. You can, for example, use a Lucene BooleanQuery

Figure 8.1 Filters selectively remove elements from a result set without
affecting the order.

253Defining and using a filter
that wraps the original user query and the restriction query. This approach, while
quite easy, has a few problems:

■ The restriction query is executed over and over. There’s no way to cache the
result of this restriction independently of the user query.

■ Each process that applies the restriction is aware of its details, or, at least, the
approach is fairly procedural. A new person on your team might forget to apply
the restriction on a new piece of code or apply it incorrectly.

■ The code that executes the query must manually chain various restrictions.
■ Constraints are limited to the data indexed in the filtered Documents.

A Hibernate Search filter provides an elegant answer to these drawbacks by using a
declarative approach. After explaining how to write and use a Lucene filter, we’ll show
how to declare one in Hibernate Search, what it brings us, and how to activate it.

8.1.1 Lucene filter

Filters in Lucene are implemented as a subclass of org.hibernate.lucene.

search.Filter, whose main method takes an IndexReader and returns a DocIdSet
(see listing 8.1). A DocIdSet is a structure that returns the ordered list of matching
document ids via an iterator. The most common DocIdSet implementation (DocId-
BitSet) uses a structure named BitSet to store the list of matching results. BitSet is
a compact structure that returns true or false for a given Lucene Document id; false
means the element is filtered out. A BitSet uses one bit per Document. If your index
contains ten million Documents, the BitSet structure will require 1.2 MB of memory.
The DocIdSet is computed and returned for an IndexReader instance.

NOTE Lucene comes bundled with a faster implementation of the BitSet class
but which exposes more of its internal state. If you’re looking for perfor-
mance, consider using OpenBitSet instead of BitSet.

Likewise, if your filter returns a very small subset of matching (or non-
matching elements), or if your filter can determine the list of matching
documents based on a very compact structure, consider writing your own
DocIdSet. Your own implementation of DocIdSet can save memory.

An IndexReader instance represents the state of the index at the instant the
IndexReader is opened by Hibernate Search. For a given IndexReader instance, the
list of Documents is fixed, and a Document cannot change its id number. The same Doc-
IdSet can be returned for the same IndexReader instance provided that the filter con-
ditions don’t change. But a different IndexReader instance works potentially on a
different set of Documents (either from a different index or simply because the index
has changed and a new IndexReader has been opened). The DocIdSet then has to be
rebuilt. Listing 8.1 shows the Filter superclass. Every filter subclasses it and imple-
ments the necessary logic.

254 CHAPTER 8 Filters: cross-cutting restrictions

public abstract class Filter implements java.io.Serializable {

 /**
 * @return a DocIdSet that provides the documents which should be
 * permitted or prohibited in search results.
 * @see DocIdBitSet
 */
 public DocIdSet getDocIdSet(IndexReader reader) throws IOException;
}

Return the DocIdSet filter B for a given IndexReader instance.

NOTE Filter used to return BitSet objects instead of DocIdSet objects. While
you can still write your filters using the old method, the authors recom-
mend against it. Your implementation will not be supported in
Lucene 3.0.

Lucene comes with built-in Filter implementations, but you can implement your
own strategy quite easily. We’ll walk through a few practical examples in the next sec-
tion, but now let’s have a look at some of the built-in Filter implementations to
become more familiar with the concept:

■ QueryWrapperFilter—A Lucene query result defines the DocIdSet applied on
subsequent filtered queries.

■ RangeFilter–The DocIdSet contains the id for all documents where a given
field is within the range; the field must not be tokenized.

■ CachingWrapperFilter—Wraps a Filter implementation and caches the Doc-
IdSet per IndexReader instance in a WeakHashMap. Don’t use this implementa-
tion with Hibernate Search. Use a hard–reference-based or at least a soft–
reference-based cache mechanism instead. Even better, use the Hibernate
Search built-in cache mechanism.

If you intend to filter based on some data stored in the index, QueryWrapperFilter is
one of your best and most flexible choices. Filtering is built on a Lucene query; build-
ing a query is now a familiar operation for us. One of the use cases is to apply a query
to the result set of a previous query, allowing a user to refine the search. RangeFilter
is an alternative approach to RangeQuery, as we discussed in chapter 7. It restricts
results to documents that match a given range. RangeFilter doesn’t suffer from the
TooManyClauses exception syndrome, because range is applied after the Lucene
query execution.

 Filters really shine from a performance point of view when they can be cached and
reused, that is, when the filter DocIdSet is built once (or occasionally) and reused by
many queries. As you’ve seen previously, a cached DocIdSet is valid for only a given
IndexReader instance. Practically, it means that you cannot cache a filter efficiently if
too many updates occur on your index data.

Listing 8.1 The Filter superclass

BLucene Filter
contract

255Defining and using a filter
 In a plain Lucene environment, the application developer needs to handle
instances of filters and apply them to the queries manually. This imperative approach
can be quite cumbersome, especially when the code tries to benefit from filter caching.

8.1.2 Declaring a filter in Hibernate Search

Hibernate Search goes a step further and handles filters as resources. Just as you don’t
need to manually open index readers when using Hibernate Search, filter instances
are managed transparently and declaratively for you.

 Let’s assume your Filter implementation is ready to be used. Hibernate Search
lets you associate a name with it. Later we’ll show how to enable filters declaratively on
queries using their names, but for now look at listing 8.2, which describes how to
define a filter in Hibernate Search. A filter definition annotation (@FullTextFilter-
Def) is placed on any of the indexed entities but is not specific to the entity it’s placed
on. Each definition has a name that must be unique in the deployment unit.

@Entity @Indexed @Table(name="PRODUCTS")
@FullTextFilterDef(
 name="distributor",
 impl=DistributorFilter.class)
public class Item {
 ...

}

You can define more than one filter per class by using @FullTextFilterDefs; this
annotation accepts an array of @FullTextFilterDef.

 DistributorFilter in listing 8.2 must have a no-arg constructor. This constraint
can be cumbersome in some situations; for example, you might want to reuse a Fil-
ter implementation that doesn’t provide a no-arg constructor (like QueryWrapper-
Filter). Hibernate Search lets you provide a Filter factory implementation instead
of a Filter implementation. Simply set FullTextFilterDef.impl() to the filter fac-
tory class. A filter factory class is a class where one of the methods is annotated with
@Factory. Listing 8.3 is an example of such an approach; a DistributorFilterFac-
tory provides a properly initialized QueryWrapperFilter.

public class WarnerDistributorFilterFactory {

 @Factory
 public Filter buildDistributorFilter() {
 Term term = new Term("distributor.name", "Warner");
 Query query = new TermQuery(term);

 Filter filter = new QueryWrapperFilter(query);

 return filter;
 }

Listing 8.2 Declare a filter using the @FullTextFilterDef annotation

Listing 8.3 Use a Filter factory to build filters needed for initialization

Filters have a
name (reference)

Filter
implementation

Has a no-arg constructor

Factory methodB

C
Build the

QueryWrapperFilter

256 CHAPTER 8 Filters: cross-cutting restrictions
}

@Entity @Indexed @Table(name="PRODUCTS")
@FullTextFilterDef(
 name="category",
 impl=WarnerDistributorFilterFactory.class)
public class Item {
 ...
}

B The factory method must return Filter instances and be annotated with @Fac-
tory. C A QueryWrapperFilter is initialized with the distributor-filtering query. D
The filter definition takes a filter factory as an implementation.

 The method providing the filter instance must be marked as @Factory.
 Filters show their real power when they are cached. Hibernate Search offers you

two layers of caching:

1 Caching of the Filter instances themselves
2 Caching the DocIdSet result from the filter execution (for a given

IndexReader)

Let’s have a deeper look.
CACHING FILTERS

Caching the actual filter instances allows a given filter to be used across many (concur-
rent) filter.getDocIdSet() calls. This is especially useful if the creation of the filter
is costly or if it does a costly evaluation.

 On top of filter-instance caching, DocIdSet results can be cached by Hibernate
Search. There are some conditions for returning the same DocIdSet instance:

■ The same filter instance is targeted.
■ The same parameters are used to initialize the query and the filter instance.
■ The same IndexReader (think of a view in Lucene directories) is used.

This DocIdSet caching is known in the Lucene world as filter caching, and in Hiber-
nate Search it’s essentially implemented by wrapping the filter instance around a cus-
tomized version of Lucene’s CachingWrapperFilter. The benefit of caching the
DocIdSet is, of course, that expensive recomputations can be avoided. Caching results
and caching DocIdSet are synonymous.

TIP Make sure your Filter implementation is thread-safe when you enable
caching.

In most cases, enabling both levels of filter caching is the right choice, and for that
reason it’s the default in Hibernate Search (FilterCacheModeType.INSTANCE_AND_
DOCIDSETRESULTS). Note that to cache results, you must also cache the instance.

 In some situations, however, it might be useful to cache only the Filter instance.
For example, a filter could use its own specific caching mechanism, or the filter results
could change dynamically because of application-specific events, making DocIdSet
caching unnecessary or even harmful. You can keep filter instance caching enabled

Define a Filter
factoryD

mailto:@Fac-tory.C
mailto:@Fac-tory.C
mailto:@Fac-tory.C

257Defining and using a filter
while disabling result caching with the following declaration: @FullTextFilter-
Def(cache=FilterCacheModeType.INSTANCE_ONLY).

 Finally, on rapidly changing data sets or a heavily memory-constrained environ-
ment, it might not be necessary to cache filters at all. Likewise, if the filter factory
dynamically chooses one filter implementation over another at runtime, caching Fil-
ter instances is not an option. Instead, use the following declaration: @FullTextFil-
terDef(cache=FilterCacheModeType.NONE).

NOTE For Hibernate 3.0 users, Hibernate Search did not have the second
level of caching, and so results were not kept around. If you wish to
cache results, make sure you manually cache filter BitSets. To enable
instance caching in Hibernate Search 3.0, use @FullTextFilterDef
(cache=true).

By default, Hibernate Search caches the last 128 instances of filters used (using a
most-recently-used algorithm). Additional filter instances are added to a soft refer-
ence cache. If you need to reclaim memory, the virtual machine can release those
additional instances. You can adjust the number of instances that will not be
reclaimed by using the following property in your configuration file: hiber-
nate.search.filter.cache_strategy.size.

 For each filter instance, and if you’ve kept result caching enabled, Hibernate
Search caches the last five results used (using a most–recently-used algorithm). Addi-
tional DocIdSet results are added to a soft reference cache. The garbage collector can
reclaim these results to save memory. You can adjust the number of results not
reclaimed by using hibernate.search.filter.cache_bit_docidresults.size.

 If the idea of a hard-reference-capped cache overflowing to a soft-reference-based
cache is not your cup of tea, you can provide you own caching strategy by implement-
ing the FilterCachingStrategy interface and declaring it in your configuration file,
as shown here:

hibernate.search.filter.cache_strategy =
 com.manning.hsia.dvdstore.util.NeverReleasedFilterCachingStrategy

Hibernate brings additional flexibility compared to a plain Lucene filter.
INJECTING PARAMETERS

If you pay close attention to listing 8.3, you’ll realize that this approach is not very flex-
ible when the application needs to deal with more than a handful of distributors. Writ-
ing one class per specific distributor is not very appealing and simply does not work if
the list of distributors is not known at development time.

 Hibernate Search can inject parameters into a filter when the filter is enabled on a
query, as we’ll show in the next section. Each parameter has a name and a value. For
each parameter provided, the Filter implementation (or the Filter factory imple-
mentation if you use the factory strategy) must have a corresponding setter in order
for Hibernate Search to inject it.

258 CHAPTER 8 Filters: cross-cutting restrictions
 Using parameters in filters has consequences on filter caching. A filter that
receives two different sets of parameters should return a different DocIdSet instance.
Let’s say the parameter represents the security level the user is allowed to access, and
different security levels should restrict different sets of documents and return differ-
ent DocIdSets. When your filter receives parameters and you use caching (the default
in @FullTextFilterDef), you need to give Hibernate Search a way to recognize
whether two filters can be considered equal if two filters share the same class and have
been initialized with the same set of parameters.

 Each instance of Filter is cached by FilterKey in the Hibernate Search Filter
cache. By default, Hibernate Search caches filters by class. The FilterKey implemen-
tation ensures that the equals() and hashCode() methods consider equal two Filter
instances of the same class. You should provide your own implementation of Filter-
Key that will ensure that two Filter instances are cached under the same key when
they’re from the same type and if their significant parameters are equal.

 While you can subclass the FilterKey class yourself, Hibernate Search provides a
default implementation that compares parameters using equals()/hashCode() for
each parameter value. The default implementation provided by StandardFilterKey
is used in listing 8.4 to ensure that distributor filters are cached per category. This
implementation should be good enough for most use cases. The method generating
the FilterKey is annotated with @Key. The key implementation ensures that each fil-
ter is cached by its category parameter.

public class DistributorFilterFactory {

 private String distributor;

 public void setDistributor(String distributor) {
 distributor = distributor;
 }

 @Factory
 public Filter buildDistributorFilter() {
 Term term = new Term("distributor.name",
 distributor);
 Query query = new TermQuery(term);
 Filter filter = new QueryWrapperFilter(query);
 return filter;
 }

 @Key
 public FilterKey getKey() {
 StandardFilterKey key = new StandardFilterKey();
 key.addParameter(distributor);
 return key;
 }
}

Listing 8.4 Using parameters in filters

Parameters are
injected in settersB

Use injected
parameters

C

Method generating
the FilterKey

D

E
Default

implementation

259Defining and using a filter
Each possible parameter has a corresponding setter B. The Filter implementation
uses parameters to configure itself C. If the filter is cached and uses parameters, a
method returning a FilterKey must be annotated as @Key D. StandardFilterKey
receives the significant parameters and ensures that the same Filter instance won’t
be shared between calls involving different parameter values E.

TIP If you set @FullTextFilterDef.cache to FilterCacheModeType.NONE, or
if the filter doesn’t have any parameters, you don’t need to provide an
@Key method.

You now know how to implement a Filter, either a simple one or one using parame-
ters, declare it to Hibernate Search, and benefit from the cache. But you don’t know
yet how to use filters or how to set the parameters. Let’s explore this process.

8.1.3 Applying filters to a query

You can choose to enable or disable filters per query declaratively, thanks to Hiber-
nate Search. Each filter is enabled by name. A query can enable more than one filter;
the result must pass all filters to be returned by the query. In practice, filters are
chained and applied one after the other; a DocSetId that takes into account all Doc-
SetIds in the chain is used to filter the query results. Listing 8.5 enables two filters on
a query.

public List<Item> searchItemWithinDistributor(String search, Distributor
➥distributor) {
 FullTextSession ftSession = SessionHolder.getFullTextSession();
 org.apache.lucene.search.Query luceneQuery =
 buildLuceneQuery(search);

 FullTextQuery query = ftSession.createFullTextQuery(
 luceneQuery, Item.class);

 query.enableFullTextFilter("security");
 query.enableFullTextFilter("WarnerDistributor");

 List results = query.list();
 return results;
}

@Entity
@Indexed
@Table(name="PRODUCTS")
@FullTextFilterDefs({
 @FullTextFilterDef(name="WarnerDistributor",
 impl=WarnerDistributorFilterFactory.class),
 @FullTextFilterDef(name="distributor",
 impl=DistributorFilterFactory.class),
 @FullTextFilterDef(name="security",
 impl=SecurityFilter.class)
})

Listing 8.5 Activation of two filters on a Hibernate Search query

A filter is
activated by name

Several filters
can be activated

Declare filters on any
of the indexed entities

mailto:@FullTextFilterDef.cache

260 CHAPTER 8 Filters: cross-cutting restrictions
public class Item {
 ...
}

Filters can be activated or deactivated using fullTextQuery.enableFullTextFil-
ter(String name) or fullTextQuery.disableFullTextFilter(String name). Both
methods are available for the Hibernate Core and Java Persistence extensions of
FullTextQuery.

 Remember, for each parameter that a filter needs, you must have a corresponding
setter in the Filter class or the Filter factory class. When the Filter instance (or
its factory) is built, parameters are injected into their respective setters and are avail-
able to the getDocIdSet() method as well as to the @Factory and @Key methods
when they are present. Listing 8.6 shows how to apply category filtering on a Hiber-
nate Search query.

public List<Item> searchItemWithinDistributor(String search,
 Distributor distributor) {
 FullTextSession ftSession = SessionHolder.getFullTextSession();
 org.apache.lucene.search.Query luceneQuery =
 buildLuceneQuery(search);

 FullTextQuery query = ftSession.createFullTextQuery(
 luceneQuery, Item.class);

 query.enableFullTextFilter("security");
 query.enableFullTextFilter("distributor")
 .setParameter("distributor",
 distributor.getName());

 @SuppressWarnings("unchecked")
 List results = query.list();
 return results;
}

public class DistributorFilterFactory {

 private String distributor;

 public void setDistributor(String distributor) {
 this.distributor = distributor;
 }

 @Factory
 public Filter buildDistributorFilter() {
 Term term = new Term("distributor.name",
 distributor);
 Query query = new TermQuery(term);
 Filter filter = new QueryWrapperFilter(query);
 filter = new CachingWrapperFilter(filter);
 return filter;
 }

 @Key
 public FilterKey getKey() {

Listing 8.6 Parameters are passed to the Filter instance or its factory.

Pass parametersB

Parameters
are injected

C

Parameters are
available

D

261Examples of filter usage and their implementation
 StandardFilterKey key = new StandardFilterKey();
 key.addParameter(distributor);
 return key;
 }

}

B One or several parameters can bet set for a given filter. C Parameters are injected
into the Filter instance or its factory. D Parameters are available to the @Factory
method. E Parameters are available when @Key is built.

 Alternatively, you can apply a filter on a query without having to declare it in
Hibernate Search. The FullTextQuery API can receive Filter instances in setFil-
ter(). The filter is added and executed after the list of enabled named filters.

TIP While it can be convenient to use this manual approach in some situa-
tions, the authors recommend using the named filter approach because
it makes the code more readable and modular and allows filter caching.

You now know all the theory behind filters. This feature is relatively simple, but it is
very flexible and useful in a plethora of situations. The next section is a collection of
examples showing filters used in various situations. Enough theory—let’s practice!

8.2 Examples of filter usage and their implementation
This section is by no means a complete list of use cases for filters, but it will give you
some advice and inspiration. Before we begin, look back at listing 8.6, which is a good
example of category filtering. The DistributorFilter builds a query wrapper filter
based on the content indexed in Lucene and on parameters provided at query time to
the filter.

8.2.1 Applying security

Our DVD store website contains a children’s selection. Contrary to many websites out
there, our website gives power to children, not parents. The children category is
reserved for customers who log in and certify they are younger than 13. We want to
expand this restriction to our search engine, so that adults cannot find books reserved
for our young customers. Filtering is a perfect solution for such a use case. Contrary to
the distributor example (listing 8.6), our system does not naturally index an age cate-
gory. We’ll show how to combine a class-level field bridge with a filter to implement
this solution.

 The list of categories for a given item is available through item.getCatego-
ries(). We’ll first write a class-level field bridge that will store in the index the fact
that an item is part of the children category. This approach is very useful for writing
queries or filters based on information you wouldn’t have put in your indexes. By
using a synthetic flag, you minimize pollution in your index. Listing 8.7 shows a pos-
sible implementation.

Parameters are
availableE

262 CHAPTER 8 Filters: cross-cutting restrictions

/**
 * Add "yes" to the dedicated field if item is
 * contained in the children category
 */
public class ChildrenFlagBridge implements StringBridge {
 public String objectToString(Object object) {
 Item item = (Item) object;

 boolean hasChildrenCategory = false;
 for (Category category : item.getCategories()) {
 if ("Children".equalsIgnoreCase(
 ➥category.getName())) {
 hasChildrenCategory = true;
 break;
 }
 }

 return hasChildrenCategory ? "yes" : "no";
 }
}

@Entity
@Indexed
@Table(name="PRODUCTS")
@ClassBridge(name="childrenOnly",
 impl=ChildrenFlagBridge.class,
 index=Index.UN_TOKENIZED)
public class Item {

 @ManyToMany
 @JoinTable(name="PRODUCT_CATEGORY",
 joinColumns=@JoinColumn(name="PROD_ID"),
 inverseJoinColumns=
 ➥@JoinColumn(name="CATEGORY"))
 private Set<Category> categories;
 ...
}

We access unindexed data B, build a synthesized flag to represent the state we’re
interested in, and index the flag value C. The bridge is declared at the class level D
and applied to the childrenOnly field. The data that leads to the flag is not indexed
directly E.

 The next step is to write a query-based filter using the flag information, declare the
filter definition, and activate it on queries for older members, as shown in listing 8.8.

/**
 * exclude all items reserved for children
 */
public class NotAChildFilterFactory {

 @Factory
 public Filter getChildrenFilter() {
 Term term = new Term("childrenOnly", "no");

Listing 8.7 Use a class-level bridge to add a category flag

Listing 8.8 The filter uses the flag to select results

Retrieve
unindexed
dataB

Index useful flagC

Declare class-level bridgeD

Property not indexedE

Use flag infoB

263Examples of filter usage and their implementation
 Query query = new TermQuery(term);

 Filter filter = new QueryWrapperFilter(query);

 return filter;
 }
}

@Entity
@Indexed
@Table(name="PRODUCTS")
@FullTextFilterDef(name="notachild",
 impl=NotAChildFilterFactory.class)
@ClassBridge(name="childrenOnly",
 impl=ChildrenFlagBridge.class,
 index=Index.UN_TOKENIZED)
public class Item {
 ...
}

//service implementation
public List<Item> searchItems(String search, boolean isChild) {
 FullTextSession ftSession = SessionHolder.getFullTextSession();
 org.apache.lucene.search.Query luceneQuery =
 buildLuceneQuery(search);

 FullTextQuery query = ftSession.createFullTextQuery(
 luceneQuery, Item.class);

 if (! isChild) {
 query.enableFullTextFilter("notachild");
 }

 @SuppressWarnings("unchecked")
 List<Item> results = query.list();
 return results;
}

B The filter restricts results to elements not flagged “children only.” C The filter is
declared. D The filter is enabled selectively during the query.

 The filter uses the synthetic flag to apply necessary restrictions.

Negative queries (queries excluding a term) are somewhat surprising in
Lucene, because they remove elements matching the term from the ele-
ments returned by the other parts of the query. By default, you cannot
query all elements not matching a given term, but you can work around
the problem by using a MatchAllDocsQuery. In our example, the filter
query excluding childrenOnly fields that match yes would be written as
in listing 8.9.

@Factory
public Filter getChildrenFilterThroughNegativeQuery() {

 Term term = new Term("childrenOnly", "yes");
 Query query = new TermQuery(term);

 BooleanQuery totalQuery = new BooleanQuery();

Listing 8.9 Use MatchAllDocsQuery to build negative queries

Define filterC

Activate filterD

NEGATIVE
QUERIES

264 CHAPTER 8 Filters: cross-cutting restrictions
 totalQuery.add(new MatchAllDocsQuery(),
 Occur.SHOULD);
 totalQuery.add(query,
 Occur.MUST_NOT);

 Filter filter = new QueryWrapperFilter(totalQuery);

 return filter;
}

Listing 8.9 must contain this somewhat artificial MatchAllDocsQuery.
Otherwise the query results would be empty all the time because the neg-
ative term would be applied to nothing.

 The security example showed us how to explicitly add information into
the index to later query on it or filter it. The procedure is quite simple:

1 Write a bridge injecting the necessary information into the
indexes.

2 Apply the bridge to the relevant entity.
3 Write a filter implementation (or a query) using the specific infor-

mation stored in the index.

The next example shows you how to avoid getting the TooManyClauses exception
when using a RangeQuery.

8.2.2 Restricting results to a given range

Often a full-text query restricts one of the properties to a given range of values. For
example:

■ Age must be between 20 and 30.
■ Price must be lower than 500.
■ Date must be between last month and today.

The classic approach for solving this problem is to use RangeQuery, as explained in
section 7.3.6. Unfortunately, RangeQuery is susceptible to the TooManyClauses excep-
tion. When Lucene sees a RangeQuery, it replaces it with a series of TermQuerys.
Lucene looks for all possible term values matching the range in the index for the tar-
geted field and adds a term query for each of them. This approach is perfectly fine
when the number of matching term values is relatively low, but it could quickly lead to
TooManyClauses exceptions.

 An alternative approach is to use a range filter; the query is executed without
range limitations. In the second phase, a filter removes the elements not matching the
range. This approach no longer suffers from the TooManyClauses exception. This
solution particularly shines in the following situations:

■ Term values matching the expected range are numerous.
■ The same range is used many times across queries.

Add a term matching
all documents

Exclude elements
matching a specific term

265Examples of filter usage and their implementation
Our DVD store site has competitive prices and attracts people on a small budget. One
of our features is to provide a search engine that targets prices below $15. The first
step is to index prices using the padding technique described in chapter 4, and the
second step is to create a filter implementation using RangeFilter.

 The bridge we used in section 4.1.3, (listing 4.6), suits our needs, and we’ll reuse it.
Listing 8.10 shows the filter implementation and its usage. Don’t forget to apply the
same logic applied by the price bridge to the value passed to the RangeFilter (in this
case padding and rounding). The terms queried must match the terms indexed.

@Entity
@Indexed
@Table(name="PRODUCTS")
@FullTextFilterDef(name="maximumprice",
 impl=MaximumPriceFilterFactory.class)
public class Item {
 @Column(name="PRICE") @NotNull
 @Digits(integerDigits=10, fractionalDigits=2)
 @Field(index=Index.UN_TOKENIZED)
 @FieldBridge(
 impl=ParameterizedPaddedRoundedPriceBridge.class,
 params= { @Parameter(name="pad", value="10"),
 @Parameter(name="round", value="1") }
)
 private BigDecimal price;
 ...
}

public class MaximumPriceFilterFactory {
 private static final int PAD = 10;
 private long maxPrice = -1;

 public void setMaxPrice(long maxPrice) {
 this.maxPrice = maxPrice;
 }

 @Factory
 public Filter getMaximumPriceFilter() {
 if (maxPrice == -1) {
 throw new IllegalStateException(
 "MaximumPriceFilterFactory.maxPrice is mandatory"
);
 }
 Filter filter = RangeFilter.Less(
 "price",
 pad(maxPrice));
 return filter;
 }

 @Key
 public FilterKey getKey() {
 StandardFilterKey key = new StandardFilterKey();
 key.addParameter(maxPrice);

Listing 8.10 Price is indexed using a padding technique and rounding

Pad numbersB

Inject max
price parameter

C

Build a range filterD

266 CHAPTER 8 Filters: cross-cutting restrictions
 return key;
 }

 private String pad(long price) {
 String rawLong = Long.toString(price);
 if (rawLong.length() > PAD)
 throw new IllegalArgumentException(
 "Try to pad on a number too big");

 StringBuilder paddedLong = new StringBuilder();
 for (int padIndex = rawLong.length();
 padIndex < PAD;
 padIndex++) {
 paddedLong.append('0');
 }
 return paddedLong.append(rawLong).toString();
 }
}

public List<Item> searchItemsLowPrice(String search) {
 FullTextSession ftSession = SessionHolder.getFullTextSession();
 org.apache.lucene.search.Query luceneQuery =
 buildLuceneQuery(search);

 FullTextQuery query = ftSession.createFullTextQuery(
 luceneQuery, Item.class);

 query.enableFullTextFilter("maximumprice")
 .setParameter("maxPrice", 15);

 @SuppressWarnings("unchecked")
 List<Item> results = query.list();
 return results;
}

B The bridge transforms price into a padded number rounded to the next integer.
C The maximum price is passed to the filter as a parameter. D RangeFilter has a
generic constructor and a few helper methods to build the right range; we want prices
lower than or equal to maxPrice. E Be sure to apply the same logic (in this case, pad-
ding) to the bridge and to the term value passed to RangeFilter. F Enable the filter
on queries.

 You can use the generic RangeFilter constructor to define lower and upper
boundaries and decide whether or not these boundaries are included or excluded
from the range. Alternatively, you can use one of the two static helper methods avail-
able; refer to the JavaDoc for more information.

WARNING The field used in a RangeFilter or a RangeQuery must not be token-
ized because the field would appear to have multiple values. Only one
term per field is allowed to ensure proper range comparison.

This filter is particularly efficient when the same range is used by most, if not all,
users. In our case, the Marketing Department decided that 15 was the psychological
price to apply but wanted the flexibility to change it down the road. We used a param-
eterized filter to achieve this flexibility.

Apply same
padding as bridge

E

Enable filtersF

267Examples of filter usage and their implementation
 Our next example is a tool that can be quite useful for certain specialized websites
to allow the user to refine the queries.

8.2.3 Searching within search results

In some situations, a user might want to execute a search within the results of a previ-
ous search. This approach can be a nice way to refine results by incrementally restrict-
ing them. Another advantage (or behavior) is that results are ordered based on the
score of the last query executed. In other words, the relevancy based on the previous
query is simply forgotten. If your search user typically searches generically and refines
his search to the specific topic he’s interested in, this solution becomes quite attractive
because the order by relevance will be based on the last search.

TIP An alternative solution to searching within a search is to use a Lucene
BooleanQuery to enforce both the previous query and the refined
query. When you use this approach, relevance is computed based on
both queries.

Implementing this solution is quite easy with Hibernate Search. You need to keep the
previous Lucene query around in some kind of conversational context. In a simple
architecture, HTTPSession can fulfill that role; if you use JBoss Seam, a standard con-
versation is your best bet. Listing 8.11 shows a possible implementation.

public class SearchWithinSearchFilterFactory {
 private Query previousQuery;

 public void setPreviousQuery(Query previousQuery) {
 this.previousQuery = previousQuery;
 }

 @Factory
 public Filter getSearchWithinSearch() {
 return new QueryWrapperFilter(
 previousQuery);
 }
}

@Entity @Indexed @Table(name="PRODUCTS")
@FullTextFilterDef(name="searchWithinSearch",
 impl=SearchWithinSearchFilterFactory.class,
 cache=FilterCacheModeType.NONE)
public class Item {
 ...
}

public class ItemRetrievalActionImpl
 implements ItemRetrievalAction {
 private org.apache.lucene.search.Query
 ➥previousLuceneQuery;

 @SuppressWarnings("unchecked")

Listing 8.11 Implementing search within a search

Wrap previous
query in filterB

Disable cacheC

Keep previous
query aroundD

268 CHAPTER 8 Filters: cross-cutting restrictions
 public List<Item> searchItems(String search) {

 FullTextSession ftSession = SessionHolder.getFullTextSession();
 org.apache.lucene.search.Query luceneQuery =
 buildLuceneQuery(search);

 previousLuceneQuery = luceneQuery;
 FullTextQuery query = ftSession.createFullTextQuery(
 luceneQuery, Item.class);

 @SuppressWarnings("unchecked")
 List<Item> results = query.list();
 return results;
 }

 @SuppressWarnings("unchecked")
 public List<Item> searchWithinSearch(String search) {

 if (previousLuceneQuery == null) return searchItems(search);

 FullTextSession ftSession = SessionHolder.getFullTextSession();
 org.apache.lucene.search.Query luceneQuery =
 buildLuceneQuery(search);

 FullTextQuery query = ftSession.createFullTextQuery(
 luceneQuery, Item.class);

 query.enableFullTextFilter("searchWithinSearch")
 .setParameter("previousQuery", previousLuceneQuery);

 @SuppressWarnings("unchecked")
 List<Item> results = query.list();
 return results;
 }
}

B Use a QueryWrapperFilter to build a filter out of the previous Lucene query. C
Do not cache the Filter instance because most queries and filters are user specific.
D Keep the previous query around in a conversational context (for example, a JBoss
Seam conversation context). E Apply the named filter to pass the previous query.

 One interesting note: This filter is not cached by Hibernate Search. Most users
perform queries unrelated to each other, and it makes little sense to cache previous
query filters in memory. It’s more efficient in our system to reapply the original query
each time.

TIP Be careful to not abuse searching within a search. Very few search web-
sites expose such a feature in their user interface because it can be very
confusing for users. Search websites tend to use a slightly different tech-
nique. After the initial query, the search engine proposes various refine-
ment possibilities to the user, who can then decide whether or not to
refine his query, based on those choices. Yahoo! Search uses such a tech-
nique, called Search Assist.

So far, all the examples have been extracting information from the Lucene index to
build the filter DocIdSet. This is not a requirement.

E Pass
previous
query to
filter

269Examples of filter usage and their implementation
8.2.4 Filter results based on external data

A filter implementation doesn’t have to build its DocIdSet from the data stored in the
Lucene index. It’s perfectly possible to extract information from an external service
and use that information to compute the filter.

 Back to our DVD store example: Around Christmas, customers become upset when
the items displayed in the results are out of stock. Our website needs to filter out items
that are no longer in stock. Stock information is updated per batch every half day. It’s
possible to build a filter that removes items that are out of stock.

 Listing 8.12 shows a more complex Filter implementation than what we’ve seen
so far. It makes use of an external service, holds an internal cache, and rebuilds data
when needed. It also shows some of the techniques used to find a Lucene document
id based on indexed information (that is, correlating unique information indexed in
a document to a document id).

public class StockFilter extends Filter {

 private volatile long lastUpdateTime;

 @SuppressWarnings("unchecked")
 private final Map<IndexReader, DocIdSet> cache =
 Collections.synchronizedMap(
 new ReferenceMap(ReferenceMap.SOFT, ReferenceMap.HARD));

 @Override
 public DocIdSet getDocIdSet(IndexReader reader) throws IOException {
 StockAction action = getStockAction();
 long lastUpdateTime = action.geLastUpdateTime();
 if (lastUpdateTime != this.lastUpdateTime) {
 cache.clear();
 }

 DocIdSet cached = cache.get(reader);
 if (cached != null) return cached;

 //not in cache, build info
 final BitSet bitSet = getAllPositiveBitSet(
 reader.maxDoc());

 Term clazzTerm = new Term(DocumentBuilder.CLASS_FIELDNAME,
 Item.class.getName());
 if (reader.docFreq(clazzTerm) == 0) {
 //index does not contain Item objects
 //no-op
 }
 else {
 //for each item out of stock, find the
 //corresponding document id by item id
 //and switch off the corresponding bit
 for (String ean : action.getEanOfItemsOutOfStock()) {
 Term term = new Term("ean", ean);
 TermDocs termDocs =

Listing 8.12 Use an external service to build the appropriate DocIdSet

Update timestampB

CKeep cache in a
SoftHashMap

Retrieve the
serviceD

Clear
outdated cacheE Check if in cacheF

By default all
documents pass

No need
to filterG

HInvoke external service

270 CHAPTER 8 Filters: cross-cutting restrictions
 reader.termDocs(term);
 while (termDocs.next()) {
 bitSet.clear(termDocs.doc());
 }
 }
 }
 DocIdSet docIdSet = new DocIdBitSet(bitSet);
 cache.put(reader, docIdSet);
 this.lastUpdateTime = lastUpdateTime;
 return docIdSet;
 }

 private BitSet getAllPositiveBitSet(int maxDoc) {
 BitSet bitSet = new BitSet(maxDoc);
 bitSet.set(0, maxDoc - 1);
 return bitSet;
 }

 private StockAction getStockAction() {
 return Container.getService(StockAction.class);
 }
}

B A synchronization flag detects when the external service has updated stock data
and needs to refresh cached BitSets. C DocIdSets are cached per IndexReader
instance in a SoftHashMap; when the IndexReader instance is dereferenced, the entry
can be garbage collected. ReferenceMap is a class from the Apache Commons Collec-
tion project. D The Filter implementation makes use of an external service; the ser-
vice is provided by your method of choice, in this case by looking up the service from
the container. E If the external service is updated, the DocIdSet cache is cleared. F
Try to find precomputed DocIdSets first. G Make sure the index contains Item docu-
ments; docFreq returns the number of documents containing the given term. This is a
small optimization that avoids calling the service and looping though the documents
when it’s not needed. H Invoke the external service that returns all EANs for out-of-
stock items. I termDocs finds all document ids matching a given EAN (there should
be only one), and we mark these documents out in the BitSet. J A DocIdBitSet
wraps a BitSet structure in the DocIdSet contract understood by Lucene. 1) Add the
newly computed DocIdSet into the cache. 1! Build a BitSet and let all documents
pass. Its size corresponds to the number of documents in the index.

 Depending on the number of items out of stock, BitSet initializations could take
some time to process in a real system. It’s important to cache Filters and DocIdSets
to maximize performance.

 An alternative implementation could avoid using the BitSet structure and use the
OpenBitSet structure or even implement a customized DocIdSet.

NOTE The IndexReader methods used in listing 8.12 use indexed properties.
These properties do not have to be stored in the Lucene index (as in
@Field(store=Store.YES)).

Document by eanI

Filter them out

Build DocIdSet
from BitSet

J

Put results in
the cache1)

Update timestamp

New BitSet
with all bits on1!

271Summary
Listing 8.12 implements its own caching system and stores the results by IndexReader
in a map. StockFilter has better information than Hibernate Search and can adjust
caches more appropriately. If we were using the regular Hibernate Search results
caching, we could not clear the cache when the data sent by the external service is
updated.

TIP Do not use a WeakHashMap to store your results. To share IndexReader
instances among different requests and allow polymorphic queries,
Hibernate Search wraps the shared IndexReaders with a per-query
IndexReader. The wrapper instance, which is passed to the filter
instance, is discarded after the query and would be reclaimed too quickly
by a weak reference. Instead, use either a soft-reference-based map or a
regular map limited in size and coupled with a most-recently-used algo-
rithm or a timeout algorithm. You can typically find such solutions in
cache libraries such as JBoss Cache or EHCache.

Since StockFilter caches the results itself, make sure you disable the Hibernate
Search results caching layer, as shown in listing 8.13. Filter instance caching should
still be enabled because otherwise the StockFilter instance and its cache would be
discarded after each usage.

@FullTextFilterDef(name="stock",
 impl=StockFilter.class,
 cache=FilterCacheModeType.INSTANCE_ONLY)
public class Item {
 ...
}

This example is by far the most complex, but remember that you write the Filter
implementation only once and use it declaratively at query time. Also in most cases,
the built-in filters like QueryWrapperFilter keep Filter implementations really sim-
ple. If you want to know more about the IndexReader methods used in listing 8.12
and available to you in a Filter, check Lucene in Action from Manning and the
IndexReader JavaDoc.

8.3 Summary
Filter is a very powerful feature provided by Lucene. It allows an application to decou-
ple some restriction logic from the core query implementation, making filters a cross-
cutting concern. Hibernate Search makes this feature easy to use by adding a declara-
tive layer on top of it; you can declaratively enable and disable filters on a full-text
query. Filters are cached by Hibernate Search transparently for the application,
increasing query performance.

Listing 8.13 Disable filter result caching and keep filter instance caching

Disable result
caching but cache
instances

272 CHAPTER 8 Filters: cross-cutting restrictions
 Filters are very useful is a wide variety of use cases. This chapter and its examples
have hopefully given you the necessary knowledge to explore filters and make the best
use of them in your applications. Unleash your imagination!

 The next part of Hibernate Search in Action explores more advanced concepts,
touching on performance, scalability, and optimization.

Part 4

Performance
and scalability

The previous parts of this book covered all of the fundamental concepts
and practical knowledge necessary to index a domain model and query it. The
next two chapters focus on performance and scalability.

 Chapter 9 is a performance cookbook that’s full of tips and tricks to apply to
optimize various areas of Hibernate Search: indexing, querying, and optimizing
index structures. Chapter 10 covers scalability and particularly focuses on using
Hibernate Search in a cluster of servers.

Performance
considerations
While full-text search technology, also called information retrieval, offers many fea-
tures not attainable by a pure relational database, it’s also well known for retrieving
information quickly. People are accustomed to retrieving search results in fractions
of a second and grow impatient if it doesn’t happen that fast. Blame Google!

 This chapter is a collection of information, tips, and tricks for making the best
of your Hibernate Search application and understanding why some operations are
expensive. You have some of this knowledge already if you’ve read the previous
chapters carefully; some of it will be new to you. The authors thought it would be
quite convenient to collect all of these techniques into a single chapter.

This chapter covers
■ Optimizing the indexing process and the index

structure
■ Optimizing queries
■ Index partitioning (named sharding)
■ Testing
275

276 CHAPTER 9 Performance considerations
 Performance is always a double-edged sword problem. As Donald Knuth (the
author of The Art of Computer Programming) phrased it: Premature optimization is the root of
all evil.

 Before running into optimization cycles and before applying every single trick in
this chapter, you should be very clear about what your goals are. Ask yourself:

■ Is the application fast enough already?
■ If it’s slow, which use case should be made more efficient?
■ Is the cost of this optimization worth the gain?

First and foremost, is the application too slow for your use case? In many cases,
Lucene and Hibernate Search are doing a good job out of the box. If some searches
are considered too slow or if indexing is taking too long, be sure to identify the prob-
lem clearly and define your goal in terms of performance. Finally, try to understand
the cost of optimization. Optimization can be costly in many different ways: the time
you, as a developer or architect, spend on the problem; the effect on code readability;
the use of additional resources (you might optimize response time by using more
memory or CPU); and so on.

 We’re now clear about our goals, so let’s go boost Hibernate Search performance!

9.1 Optimizing indexing
Indexing is an operation that doesn’t get all the attention it deserves; people are more
focused on search speed. They can accept indexing not being a Formula 1 or NASCAR
car because it doesn’t affect their system much. In some situations, however, it’s good
to know how to index faster. Indexing time depends on many factors:

■ Size of the data indexed
■ Index strategy used
■ Database access and performance
■ Network performance
■ Input/output performance

The rest of this section will describe how to optimize some of these factors.

9.1.1 What influences indexing time for a single entity

Several factors influence the indexing operation for a given object. Let’s walk through
some of the factors you can easily influence:

■ Number of properties indexed
■ Type of analyzer used
■ Properties stored
■ Properties embedded

The more properties are indexed on a given object and the bigger they are, the lon-
ger the indexing process takes. Make sure to index only those properties you need to
search by. This will also reduce the size of your index and make the search faster.

277Optimizing indexing
 Properties marked for tokenization are passed through the relevant analyzer
implementation, which splits the property into individual words and applies addi-
tional logic, this logic being either simpler or more complex. This operation takes
time. Stemming a word or finding its phonetic approximation can be quite consum-
ing of time and CPU compared to an analyzer that simply passes the words to the
index. Make sure you need the feature, or, more accurately, if you need the feature,
make sure indexing time is still within your acceptable range.

 When you mark a property for Store.YES or Store.COMPRESS, Lucene needs to
do some additional operations (which can be costly in terms of input/output and
CPU if you choose to compress it). Provided that Hibernate Search doesn’t need you
to store properties in the index unless you want to project them, think twice before
storing a property.

 Be a bit cautious with @IndexedEmbedded properties. Hibernate Search lets you
embed information about associated objects so that you can later apply queries on
these associations. There are a couple of drawbacks with this approach:

■ Associated object(s) must be loaded (if they’re not already) to be indexed.
■ More data is indexed, especially when collections are marked as @Indexed-

Embedded.

Make sure to not embed an association if you don’t need the information at query
time (especially collections). Also make sure to keep your database access efficient.
Section 9.1.3 gives good advice on this subject.

 These tips are helpful for reducing the indexing time of a given object. What hap-
pens when many objects are indexed concurrently?

9.1.2 Optimizing many concurrent indexing operations

Lucene is not a relational database. In particular, its concurrency behavior isn’t what
you’d expect from an ordinary relational database. Every time an index is updated, a
pessimistic lock is acquired for the duration of the update. Other writers have to wait
until the lock is released to apply their own changes. Only one writer can work at a
given time on the index.

 This limitation is perfectly acceptable on applications where updates are relatively
infrequent (read-mostly applications) but can produce huge contentions and limit
the system’s scalability for more write-intensive applications. During heavy index writ-
ing, all application threads will end up waiting on each other for the index lock acqui-
sition. This will essentially transform your multiuser application into a single-threaded
application, which will be quite disappointing. Don’t panic; this catastrophic scenario
happens only on heavy write applications.

 Test your system before deciding to go for an asynchronous approach. Lucene is
fast enough, and the synchronous approach is probably perfectly fine for you.

 Two solutions are available to reduce or eliminate this contention problem:

■ Index asynchronously.
■ Index on a different machine.

278 CHAPTER 9 Performance considerations
By default, Hibernate Search indexes your object changes at commit time. Once
changes are indexed, the commit operation ends. This approach can lead to the con-
tention problem because indexing is done synchronously. The lock is acquired syn-
chronously with the application flow during the precommit phase and can become a
hot spot for the whole application.

 You can configure Hibernate Search to index data asynchronously, at commit
time. Changes are passed to a different thread for later execution, and the commit
operation finishes right away. This approach decouples index lock acquisition from
the main application flow. This is particularly useful when the application temporarily
suffers from heavy writing time. During a heavy writing moment, update operations
queue up because the indexing process cannot keep up with the load. When the
heavy writing period diminishes, Hibernate Search continues to write to the index
until it has emptied the queue.

 You can tune some aspects of the asynchronous process. For example, you can
define the maximum number of elements in the waiting queue and the number of
concurrent threads processing the queue. If the queue limit is reached, the caller
thread (commit operation) will process indexing synchronously. Setting a limit has
two advantages:

■ It prevents filling up the queue until an OutOfMemoryException occurs.
■ It provides feedback to the system that limits the indexing load (by forcing pro-

ducer threads to wait).

The ideal number of concurrent threads depends on the number of Lucene indexes
written concurrently in your system. Since a pessimistic lock is acquired per index,
having two concurrent threads working on the same index is only marginally benefi-
cial (at least for the current version of Hibernate Search). The default value is 1; one
thread is used globally for indexing. Be sure to experiment on your system to find the
sweet spot, starting with one thread per index used in a typical transaction. The con-
figuration shown in listing 9.1 configures Hibernate Search for an asynchronous pro-
cess using hibernate.cfg.xml. You can, of course, use persistence.xml as well.

<hibernate-configuration>
 <session-factory>
 <property name="hibernate.search.default.indexBase">
 ➥./build/indexes</property>

 <property name="hibernate.search.worker.execution">
 ➥async</property>
 <property name="hibernate.search.worker.thread_pool.size">
 ➥ 2</property>
 <property name="hibernate.search.worker.buffer_queue.max">
 ➥ 100</property>

 <session-factory>
</hibernate-configuration>

Listing 9.1 Configuring Hibernate Search to index asynchronously

Execute
asynchronously

Concurrent threads
processing

Queue size limit

279Optimizing indexing
An alternative approach pushes asynchronism even further. Instead of pushing work
onto a local queue processed by a local pool of threads, you can ask Hibernate Search
to push indexing work onto a JMS queue, which is remotely processed on a different
machine (the index master server). We won’t describe this approach in detail here
because chapter 10 is fully dedicated to it. Here are some of its benefits from a perfor-
mance point of view:

■ The indexing load is transferred to a different machine, freeing CPU, I/O, and
memory to the main application processes.

■ Lock contention is delegated to the index master and entirely absent from the
flow in the main application, regardless of the load.

For more information about indexing backend strategies, read section 5.3.3. When
you first index your database, or if you reindex your data set entirely every night, you
want the massive indexing process to be as fast as possible. Let’s explore some of the
techniques available for that.

9.1.3 Optimizing mass indexing

Reindexing your entire data set or a significant part of your data set can be a long
process if you do it the wrong way. This section will help you to make it as efficient as
possible.

 Indexing a huge data set involves two distinct but interwoven operations: You need
to read objects from the database, and then you need to index them. Most of the per-
formance problems arise on the first operation. Hibernate Search needs to have
access to the object and all its associated indexed objects during the indexing opera-
tion. The object, its @IndexedEmbedded associations, and its @ContainedIn associations
(recursively) form the object graph used during indexing. Use the following tech-
niques to load this graph as efficiently as possible:

■ Write the appropriate query using joins.
■ Use @BatchSize or FetchMode.SUBSELECT when a direct join cannot be used.
■ Load lazy properties if they are indexed (for example, use the “fetch all proper-

ties” syntax in HQL).

If you don’t pay attention, Hibernate Search might trigger some n+1 load problems
while indexing your data. Listing 9.2 is an example of the query needed to load Item
objects provided that their Distributor association is marked as @IndexedEmbedded.

Criteria query = session.createCriteria(Item.class)
 .setFetchMode("distributor", FetchMode.JOIN)
 .setResultTransformer(
 CriteriaSpecification.DISTINCT_ROOT_ENTITY
);

Listing 9.2 When indexing objects, load using a query to minimize n+1 problems

Distinct them
(collection load)C

Load necessary
associations

B

280 CHAPTER 9 Performance considerations
You need to fetch associations involved in the indexing process for this entity by
using FetchMode B (you can also use static mappings such as @BatchSize). If you
load collections, make sure you distinct the results to avoid indexing the same object
multiple times C. (SQL loads the data for your main object for each element in your
collection.)

The second most common problem occurs because your indexed data set cannot fit
all data in memory (usually). If you attempt to load all objects, then index them, you’ll
likely face an OutOfMemoryException before you even finish loading objects. Make
sure you use a scrollable result set and flush your index work queue and clear the ses-
sion on a regular basis. This will limit the number of objects loaded into memory at a
given time. Listing 9.3 demonstrates a typical mass indexing routine.

private static final int BATCH_SIZE = 1000;
private static final int FETCH_SIZE = 100;

public void indexAllItems() {

 FullTextSession session = SessionHolder.getFullTextSession();

 Criteria query = session.createCriteria(Item.class)
 .setFetchMode("distributor", FetchMode.JOIN)
 .setResultTransformer(
 ➥CriteriaSpecification.DISTINCT_ROOT_ENTITY)
 .setCacheMode(CacheMode.IGNORE)
 .setFetchSize(FETCH_SIZE)
 .setFlushMode(FlushMode.MANUAL);

 ScrollableResults scroll = query.scroll(
 ➥ ScrollMode.FORWARD_ONLY);

 int batch = 0;
 scroll.beforeFirst();
 while (scroll.next()) {
 batch++;
 session.index(scroll.get(0));
 if (batch % BATCH_SIZE == 0) {

Listing 9.3 Mass indexing routine limiting objects loaded into memory

How to make sure all necessary data is fetched
Several strategies are available to make sure you haven’t missed an association. The
first one is to enable Hibernate Core logging and check queries going through. An n+1
pattern is readily recognizable; after a given query, you’ll see a second query execut-
ed many, many times.

The second approach is to use the Hibernate Core statistics API (available in Ses-
sionFactory.getStatistics()). When an entity is loaded under the cover, Hiber-
nate increases getEntityFetchCount(). Be sure to enable statistics before testing
by using statistics.setStatisticsEnabled(true).

Run in a transaction

Minimize cache
interaction

B

Align batch
size and JDBC
fetch sizeC

Disable
flush

Scroll in forward
mode onlyD

281Optimizing indexing
 //no need to session.flush()
 //we don't change anything
 session.flushToIndexes();
 session.clear();
 }
 }
 //the remaining non flushed index work
 //processed at commit time
}

B It is a good practice to ignore the cache when dealing with a huge amount of data.
The benefit doesn’t overcome the cost of maintaining cache coherence. C Align JDBC

fetch size with the batch window size so that FETCH_SIZE = BATCH_SIZE/n to minimize
memory consumption and database round trips. D Scrolling in forward mode loads
objects on demand and makes sure objects (and their JDBC row representation) are
garbage collectable. E After every BATCH_SIZE operations, flush changes to the
indexes (flushToIndexes()) and free objects from the session (clear()). This will
limit memory consumption.

 Be sure to run the indexing process in a transaction. If you don’t, Hibernate
Search needs to apply index changes when fullTextSession.index() is called, lead-
ing to expensive Lucene index opening and closing for each Item.

You can find additional information in section 5.4.2.
 Indexing is the first half of Hibernate Search’s job. Let’s now see how to optimize

search queries.

Flush index
works and clear
the session

E

Reindexing and old content removal
If you plan to completely refresh an index and reindex the entire content, be sure to
delete the old indexed information by using searchFactory.purgeAll(Class). Oth-
erwise, removed objects will still live in the index. To save space, you can call
searchFactory.optimize(Class) after purgeAll. The old content will be physically
removed from the index structure. Listing 9.4 shows the process.

public void indexAllItems() {

 FullTextSession session = SessionHolder.getFullTextSession();

 session.purgeAll(Item.class);
 session.flushToIndexes();
 session.getSearchFactory().optimize(Item.class);

 //read and index the data
}

Remove the old content to make sure no orphaned document remains B. If you’re
short on space, call flushToIndexes C, then optimize. optimize will physically
remove the old content D. This operation is generally unnecessary.

Listing 9.4 To reindex a data set, remove the old content first

B Remove obsolete content
C Apply purge before optimize

DPhysically clear space

282 CHAPTER 9 Performance considerations
9.2 Optimizing searches
The most prominent part of a search engine is the search. Slow searches are the first
problem your users will notice. But just as with any part of the system, don’t try to pre-
maturely optimize. Lucene and Hibernate Search are pretty good at providing results
efficiently out of the box. That being said, let’s walk through the elements that influ-
ence query time.

9.2.1 Optimizing the way you write queries

You can change a few things in the way you write queries to make the most of Hiber-
nate Search:

■ Limit the number of targeted classes.
■ Limit the number of clauses in your Lucene query.
■ Use pagination to limit the number of objects loaded.
■ Use criteria to define the fetching strategy.
■ Use projection.

Let’s have a look at each technique.
LIMIT THE NUMBER OF TARGETED CLASSES

When you write a Hibernate Search query, you can define one or more targeted
classes. Returned objects will match only these classes (and any of their subclasses).
Under the hood, Hibernate Search optimizes Lucene resources and runs the query
only on the relevant Lucene indexes, reducing unnecessary input/output and file
opening. Be sure to explicitly define the list of classes your query is targeting, as shown
in listing 9.5.

public List<Item> getMatchingItems(String words, int page) {

 FullTextSession ftSession = SessionHolder.getFullTextSession();
 org.apache.lucene.search.Query luceneQuery =
 buildLuceneQuery(words);

 org.hibernate.Query query =
 ftSession.createFullTextQuery(
 luceneQuery,
 Item.class);

 @SuppressWarnings("unchecked")
 List<Item> results = query.list();
 return results;
}

Performance is at its best when a single class is targeted B, because Hibernate Search
can issue a single database query.

Listing 9.5 Explicitly listing targeted classes improves query performance

Restrict queryB

283Optimizing searches
LIMIT THE NUMBER OF CLAUSES

In the same line of thought, let’s try to further optimize our use of Lucene. Lucene
query performance is a function of the number of clauses (that is, individual restric-
tions). If you can, try to limit the number of clauses.

 By default Lucene limits you to 1024 clauses and raises a TooManyClauses excep-
tion if the query goes beyond that. You might think that you will never write a query
complex enough to reach the 1024 clause limit. After all, that would be a huge query!

 This is not true. Remember that a range query, a prefix query, and a wildcard
query among others are rewritten as Boolean queries that encompass all the matching
terms in the index. Provided the range is large enough and populated enough, you’ll
reach this limit in a heartbeat. Fortunately, there’s a way to work around this problem.

 Use a filter to exclude elements that are out of range. Filters are applied indepen-
dently of the core query process and don’t suffer from the clause limit problem. Fil-
ters especially shine when the same range is reused by many concurrent queries (for
example, a filter showing only changes that happened in the last month). Check sec-
tion 8.2.2, for more information on how to set up and use a filter.

 The next tricks are focused on optimizing interactions between Hibernate Search
and the Hibernate persistence context. This typically happens after the Lucene query
execution.
USE PAGINATION TO LIMIT THE NUMBER OF OBJECTS LOADED

The first trick is to not load information you don’t need. Why would you load 1000
objects if your customer looks at only the first 20 elements 95 percent of the time? The
process of limiting the number of matching results returned is called pagination. Not
only does it limit the number of domain model objects loaded by Hibernate Search, it
also limits the number of Document objects loaded by Lucene. Listing 9.6 shows pagi-
nation used to display Item objects by batches of 20.

private static final int WINDOW = 20;

public List<Item> getMatchingItems(String words, int page) {

 FullTextSession ftSession = SessionHolder.getFullTextSession();
 org.apache.lucene.search.Query luceneQuery =
 buildLuceneQuery(words);

 org.hibernate.Query query = ftSession.createFullTextQuery(
 luceneQuery, Item.class);

 @SuppressWarnings("unchecked")
 List<Item> results = query
 .setFirstResult((page - 1) * WINDOW)
 .setMaxResults(WINDOW)
 .list();
 return results;
}

Listing 9.6 Use pagination to limit the amount of data loaded

First resultB

Number of resultsC

284 CHAPTER 9 Performance considerations
When paginating, you define the first element retrieved B (the first element of the
page in this case) and the number of elements retrieved C. Section 6.4 has more in-
depth information about pagination.
LOAD THE APPROPRIATE OBJECT GRAPH

We now load exactly the number of results we want, but the objects matching the
query and returned as a result might not be all the data we need. What if your screen
needs to display information from an associated entity? By default, and if your associa-
tion is marked as lazy, Hibernate Search will not load this information when retrieving
the matching object. This can potentially trigger an n+1 problem, where multiple sub-
sequent queries are fired to load these associated objects.

 Hibernate Search lets you override the fetching strategy of your object graph.
Section 6.8 has more information on the subject, but let’s refresh your memory with
listing 9.7.

public List<Item> getMatchingItemsWithDistributor(String words, int page) {
 FullTextSession ftSession = SessionHolder.getFullTextSession();
 org.apache.lucene.search.Query luceneQuery =
 buildLuceneQuery(words);

 FullTextQuery query = ftSession.createFullTextQuery(
 luceneQuery, Item.class);

 Criteria criteria = ftSession.createCriteria(Item.class)
 .setFetchMode("distributor", FetchMode.JOIN);

 @SuppressWarnings("unchecked")
 List<Item> results = query
 .setFirstResult((page - 1) * WINDOW)
 .setMaxResults(WINDOW)
 .setCriteriaQuery(criteria)
 .list();
 return results;
}

Use a Criteria query to define which associations should be fetched B and associate
the Criteria query with the full-text query C. Note that the full-text query and the Cri-
teria query both target Item.

TIP You can define the fetching strategy only when you target one class (and
its subclasses) in your full-text query. This class must be the same as the
class used to build the Criteria query. Also remember, you must not use
the Criteria query to apply a restriction.

More information about overriding fetching strategies is in section 6.8.
USE PROJECTION

Our last tip related to query writing is useful when you find yourself displaying a very
small portion of the object properties. If loading the matching object takes too long,
and you expect to display only a couple of properties, consider using projection.

Listing 9.7 Use a Criteria API to define a fetching strategy

Define
fetching
strategy

B

Set fetching strategy
to the queryC

285Optimizing searches
 Projection will rehydrate specific properties from the index instead of delegating
the object load to Hibernate Core. This can save the overhead of loading the object
(graph) from the database. The catch is that you must store the property values in
the index (see section 3.3.3), and the bridge used to convert the object property into
a string consumable by Lucene must be two-way (see section 4.1). Because of these
additional stored properties, your index will become bigger and slower. Using prop-
erty projection is a trade-off; don’t use it unless you gain significant performance
improvements.

TIP If you use pagination, the difference between projecting and loading the
full object should be fairly minimal. If you load a huge number of
objects, the difference could be more significant. But in general, return-
ing a lot of objects should be questioned.

Section 6.5 gives you a more in-depth explanation, but let’s look at a small example
here (see listing 9.8). Using projection to retrieve only the necessary properties can
increase performance significantly but has trade-offs.

@Entity @Indexed
public class Item {

 @Id @GeneratedValue
 @DocumentId
 @Column(name="PROD_ID")
 private Integer id;

 @Field(index=Index.TOKENIZED, store=Store.YES)
 @Column(name="TITLE")
 @NotNull @Length(max=100)
 private String title;
 ...
}

public List<String> getTitleFromMatchingItems(String words) {

 FullTextSession ftSession = SessionHolder.getFullTextSession();
 org.apache.lucene.search.Query luceneQuery =
 buildLuceneQuery(words);

 FullTextQuery query = ftSession.createFullTextQuery(
 luceneQuery, Item.class);

 @SuppressWarnings("unchecked")
 List<Object[]> results = query
 .setProjection("title")
 .list();

 List<String> titles =
 new ArrayList<String>(results.size());
 for(Object[] objects : results) {
 titles.add((String) objects[0]);
 }
 return titles;
}

Listing 9.8 Using projection to retrieve only necessary properties

Projected properties
are stored

B

List projected
properties

C

Retrieve arrays
of objects

D

286 CHAPTER 9 Performance considerations
B Projected properties must be stored in the index and must use a two-way bridge. C
This defines the list of projected properties. D Results are returned as Object[]. The
conversion code could be replaced by a ResultTransformer (see section 6.6 for more
information).

 We’ve walked through a few tips to write full-text queries efficiently. Let’s now see
how to tweak the Hibernate Search engine to optimize even further.

9.2.2 Maximizing benefits from the caching mechanisms

Hibernate Search caches resources to maximize query performance. This section will
describe some of these caching strategies and let you make the best of them.
DEFINE A READERSTRATEGY

For queries, Hibernate Search interacts with Lucene through one or multiple
IndexReaders. As their name implies, IndexReader objects are used to read indexes.
They see the state of the index at the time they are opened as if they were taking a
snapshot of the index. The way Hibernate deals with index readers is fully customiz-
able through the ReaderProvider interface.

 By default, Hibernate Search ships with two strategies:
■ not-shared
■ shared

The not-shared strategy opens the necessary index readers for every query. This is
the least-efficient strategy and should rarely be used, if at all.

 The shared strategy shares IndexReader instances across many concurrent queries
and keeps the segment readers open as long as the underlying index segment doesn’t
change. This solution turns out to be very efficient for these reasons:

■ The cost of opening and closing the index files is virtually eliminated.
■ Index readers are kept warm for many queries.

The first few queries applied to an IndexReader are slower because some internal data
is cached by the IndexReader object and needs to be loaded by the first few queries.
Sharing IndexReaders eliminates the cost for all subsequent queries.

 shared is the default strategy used by Hibernate Search, but you can override it by
setting a configuration property, as shown in listing 9.9. If you’re not satisfied with
the reader strategies Hibernate Search provides, you can write your own ReaderPro-
vider implementation and pass the fully qualified class name to the same configura-
tion property.

hibernate.search.reader.strategy not-shared

#alternatively
hibernate.search.reader.strategy
 ➥ com.acme.application.util.OtherReaderProvider

Listing 9.9 Changing default reader provider

Use the not-shared strategy

Use a custom reader
provider strategy

287Optimizing searches
The shared strategy is the right choice most of the time and should rarely be overrid-
den. It is important to understand how this strategy works in order to make the best of
it. When a change happens to an index, you should reopen the IndexReaders to see
this change. When a full-text query is executed, the shared strategy identifies the
readers that need to be used, verifies that they are up to date, and reopens them if
required (or more precisely reopens the segments that changed). The less writing to
indexes there is in your application, the longer IndexReaders will be shared.

 One possible custom ReaderProvider implementation could warm up IndexRead-
ers in the background before using them. This would prevent the first few slow que-
ries and would come at the cost of seeing the latest version of the index all the time.
The old IndexReaders would have to be served while new readers are warmed up.

TIP If you write a custom ReaderProvider implementation, remember that a
ReaderProvider is accessed concurrently. Look at the default implemen-
tations, and you will learn a lot about how to guard against concurrent
accesses while maintaining a cache of IndexReaders.

In chapter 10, we’ll show a way to minimize the number of times indexes are updated
without changing how your application updates data. By updating the index asynchro-
nously and pushing back index changes from time to time, you can keep an
IndexReader open for a longer period of time. The catch is that changes are not visi-
ble immediately in full-text queries.

NOTE By default, entities are indexed in different Lucene indexes. If one entity
is updated frequently but another is rarely updated, the caching system
will perform very well for queries targeting the entity that’s updated
infrequently. The IndexReader object for this entity will rarely have to be
updated.

Another cache system offers benefits when index changes are infrequent, and we’ll
discuss it now.
FILTER CACHING

Filters are used to eliminate some results from a query after the query execution and
apply some cross-cutting restrictions such as those pertaining to security, time ranges,
or categories. A filter is essentially a bit mask indicating whether or not a Document in
the index should be included in the final result. Building this bit mask (often repre-
sented by the memory-efficient BitSet object through the DocIdSet API) can be quite
expensive. But Hibernate Search can cache DocIdSet objects, making subsequent fil-
ter applications very cheap. DocIdSets are cached for a given set of elements:

■ The IndexReader the DocIdSet has been created for
■ The filter type (its definition)
■ The optional parameters injected into the filter

When the index changes, the bit mask is likely to be obsolete and needs to be rebuilt.
A filter that uses different parameters is unlikely to return the same bit mask and must
not share the same DocIdSet object. Those three elements guarantee that the DocId-
Set will be applied to the relevant data.

288 CHAPTER 9 Performance considerations
 If your index doesn’t change frequently and your filter doesn’t use parameters or
uses the same set of parameters often, you’ll make the most of filter caching. Here are
a few good examples:

■ A temporal filter shows only the DVDs released in the last 30 days. This filter can be
computed once a day and its DocIdSet reused.

■ A category filter restricts some categories to customers. Because the number of cate-
gories is limited, Hibernate Search can cache the DocIdSet for each category.

■ A security filter applies restrictions to the visible documents. If the system contains
five levels of security, keeping filter results for the five different parameters in
the cache is likely to be quite efficient.

By default, caching is enabled, but you can adjust that in the filter definition (@Full-
TextFilterDef). Explore chapter 8 for more information. Also remember that cach-
ing trades speed for memory; keep an eye on memory consumption.

 The speed of a Lucene query is directly dependent on the index structure. We’ll
now explore how this structure evolves over time during indexing and how you can
optimize it to speed up your queries.

9.3 Optimizing the index structure
Lucene tries very hard to make searches as fast as possible. In some information-
retrieval systems, it means the index cannot be updated. The index has to be entirely
recreated for every change. Fortunately for us, Lucene is not such a system and can
update information in the index. Not only that, but you can also query the index
while new information is added to it. To achieve this, Lucene doesn’t change the
index files but rather creates new sets of files containing the newly indexed informa-
tion. These files are a kind of mini-index called a segment, which together form the
global index. Likewise, instead of physically deleting a document from the index,
Lucene flags it as deleted and ignores it during queries. In Hibernate Search, index-
ing is executed per transaction. One mini-index is created per transaction and per
index (unless merging occurs).

 This file-structure approach results in the creation of numerous small files in the
Lucene directory and a constant increase in space used because no record is physi-
cally deleted. To query an index, Lucene must open many different files. This poses
three problems:

■ Opening many files is slower than opening a smaller number of files.
■ Because records are not physically deleted, Lucene has to read more

 information.
■ The total number of files you can open simultaneously is limited in some oper-

ating systems (particularly Linux).

If you want to know more about the index structure, either check the Lucene docu-
mentation or have a look at Lucene in Action from Manning, which talks in depth on
this subject.

289Optimizing the index structure
NOTE INCREASING THE MAXIMUM NUMBER OF FILES OPENED When you use
Lucene, you can quickly reach the maximum number of files opened
simultaneously on Linux systems. You can adjust this limit by using the
ulimit -n <limit> command.

To circumvent those problems, Lucene can optimize the index structure. This opera-
tion is very similar to file system defragmentation. The mini-indexes are merged into a
single, bigger index, and the deleted records are removed from the new index.

 This results in a file structure that’s much more efficient for Lucene queries:

■ Fewer files have to be opened.
■ The amount of data to be read is smaller.
■ The risk of hitting the file system limit of simultaneous opened files fades away.

Note that optimizing an index has a few drawbacks. IndexReaders have to be
reopened to see the new structure, and an index copy from master to slaves in the JMS
replication model will likely be a full copy. In general, these drawbacks are acceptable
considering the benefits.

 Let’s see how to apply this optimization with Hibernate Search.

9.3.1 Running an optimization

You can run the optimization process in two ways in Hibernate Search: manually or
automatically.
MANUAL OPTIMIZATION

The SearchFactory method exposes two methods for optimizing your indexes. The
first one optimizes the index(es) for a given class. Listing 9.10 shows how to call this
method.

public void optimize(Class clazz) {
 FullTextSession session = SessionHolder.getFullTextSession();
 session.getSearchFactory().optimize(clazz);
}

When this method is called, the optimization operation is immediately executed. Con-
trary to index operations, optimize does not wait until the end of the transaction. You
can still query while an optimization is in progress, but queries tend to be much
slower for the duration of the optimization process.

TIP When using JMS mode (see section 10.1.2), optimization is not applied
when run on the slaves. Slaves have read-only indexes. Be sure to apply
optimize calls on the master instance.

You can also optimize all the indexes by calling the searchFactory.optimize()
method, as shown in listing 9.11.

Listing 9.10 Optimizing index(es) hosting a given class

Optimize a given class

290 CHAPTER 9 Performance considerations

public void optimize() {
 FullTextSession session = SessionHolder.getFullTextSession();
 session.getSearchFactory().optimize();
}

When should you call optimize? Optimizing is useful when many insertions or dele-
tions have been made, particularly after initial data indexing or when you have rein-
dexed a significant part of your data set.

TIP There’s no need to optimize when you’re about to index a large section
of data unless you need to reclaim disk space. Optimization doesn’t make
indexing faster. On the other hand, when you’ve finished a massive
indexing, it’s a good time to optimize. Subsequent queries will execute
faster.

A nice tool to see if an optimization is necessary is Luke. One of the panels shows how
many files the index contains and the size of each (see section 2.6). Listing 9.12 shows
how to use optimize after a complete reindexing.

public void reindex() {

 FullTextSession session = SessionHolder.getFullTextSession();
 session.purgeAll(Item.class);
 session.flushToIndexes();
 session.getSearchFactory().optimize(Item.class);

 Criteria query =
 session.createCriteria(Item.class)
 .setFetchMode("distributor",
 FetchMode.JOIN)
 .setResultTransformer(
 CriteriaSpecification.DISTINCT_ROOT_ENTITY)
 .setCacheMode(CacheMode.IGNORE)
 .setFetchSize(BATCH_SIZE);

 ScrollableResults scroll = query.scroll(ScrollMode.FORWARD_ONLY);

 scroll.beforeFirst();
 int batch = 0;
 while (scroll.next()) {
 batch++;
 session.index(scroll.get(0));
 if (batch % BATCH_SIZE == 0) {
 session.flushToIndexes();
 session.clear();
 }
 }

 session.flushToIndexes();
 session.getSearchFactory().optimize(Item.class);
}

Listing 9.11 Optimizing all indexes

Listing 9.12 Run optimize after indexing all data to speed up queries

Optimize all indexes

Run after purge
to save spaceB

flush() is not called;
no change is made

Flush the final changes
before optimizing

C

Run optimizationD

291Optimizing the index structure
B To save space, you can run optimize after purging your data. Make sure you call
flushToIndexes between purgeAll and optimize to apply the purge to the Lucene
index. This set of operations is not mandatory. C Be sure to finish flushing all index
changes before optimizing. D Optimize operations after making big changes in the
index to speed subsequent queries.

 Don’t forget that optimizing is a fairly expensive operation, especially if there is a
lot to optimize. It’s preferable to do it on offline indexes, when only few queries are
run, or to execute it frequently enough to have small sections of work.

 Hibernate Search offers a more transparent way to optimize your indexes, which
we’ll explore next.
AUTOMATIC OPTIMIZATION

Hibernate Search can take care of running the optimization process for you on a
regular basis. Optimization can be triggered when the following metrics reach a cer-
tain limit:

■ The number of operations applied to an index
■ The number of transactions applied to an index

If you set these numbers to a reasonably low value, small optimizations will be applied
regularly and transparently for you. You can define these settings for all indexes or
override them per index. The configuration mechanism is similar to the one you saw
in section 5.1.1. A property name is composed of the following:

■ hibernate.search.
■ The index name or default to share these configurations for all indexes
■ A dot (.) followed by the property suffix

The two interesting suffixes are optimizer.operation_limit.max and opti-

mizer.transaction_limit.max. When more than optimizer.operation_limit.max
operations are executed on a given index (one index per entity type by default), an
optimize operation is executed, and the operation and transaction counters are reset.
Likewise, when optimizer.transaction_limit.max transactions are executed on a
given index, an optimize operation is executed, and the operation and transaction
counters are reset. Hibernate Search is smart enough to run automatic optimizations
only at the end of the transaction. This is useful because an optimize operation is bet-
ter done after all indexing is complete.

 Listing 9.13 shows a configuration where we optimize every 100 operations by
default and every 30 transactions (or 100 operations, whichever comes first) for items.

<session-factory>
 ...
 <property name="hibernate.search.com.manning.hsia.dvdstore.
 ➥model.Item.optimizer.transaction_limit.max" >30</property>
 <property name="hibernate.search.default.
 ➥optimizer.operation_limit.max">100</property>
 ...
</session-factory>

Listing 9.13 Setting transparent optimization limits

292 CHAPTER 9 Performance considerations
You know how to trigger an optimization. Now let’s see if you can configure Hibernate
Search to tune the index structure.

9.3.2 Tuning index structures and operations

Hibernate Search allows you to tune its indexing performance through a set of config-
uration parameters that control how the underlying Lucene IndexWriter utilizes
memory and disk file structures. A Lucene index is composed of mini-indexes (each
of them being an atomic structure containing the necessary information). These mini-
indexes are called segments in Lucene.

 The two sets of parameters allow for different performance settings depending on
the use case. During indexing operations triggered by database modifications, the fol-
lowing parameters are used:

■ hibernate.search.<indexname>.indexwriter.transaction.merge_factor
■ hibernate.search.<indexname>.indexwriter.

➥transaction.max_merge_docs

■ hibernate.search.<indexname>.indexwriter.

➥transaction.ram_buffer_size

The indexname can be replaced by default if you want to define global values.
 merge_factor determines how often segments are merged with each other when

insertions in the Lucene index occurs. The lower the merge_factor, the fewer seg-
ments are allowed at a given time and the more frequently merging happens. With
small values, less RAM is used because fewer documents are kept in memory before
being merged. But more file creations and merges are performed while indexing,
making indexing speed slower. On the other hand, searches on unoptimized indexes
are faster because fewer segments are present at a given time. With larger values,
indexing is faster, but searches on unoptimized indexes are slower because of more
segmented files. By default, Hibernate Search uses the Lucene default value (cur-
rently 10).

 max_merge_docs defines the largest number of documents allowed in a segment.
When Lucene is about to add a new document to a given segment, it will create a new
segment if the max_merge_docs limit is reached. This limit has priority over the
merge_factor. A segment containing max_merge_docs will never be merged again. By
default, Hibernate Search uses the Lucene default value (currently no limit).

TIP While max_merge_docs can be useful for ensuring smaller merges, don’t
use it as a way to control memory usage; ram_buffer_size is a better way.
If you happen to use both at the same time, a new segment is created as
soon as one of the limits is reached.

ram_buffer_size controls the amount of memory used to buffer documents during
indexing. This property is expressed in megabytes and defaults to 16. When this value
is large, it takes longer for a new segment to be created, and merges happen less
often. However, merge operations are slower and involve more documents.

293Optimizing the index structure
 You can see from their definitions that these parameters are interrelated. The
higher a merge_factor is, the less often a merge happens, because Lucene lets the
number of segments increase. At the same time, when ram_buffer_size is high, a sin-
gle segment can contain many documents, which leads to fewer segment files being
created. Finally, a nondefault value for max_merge_docs could force Lucene to trigger
a merge earlier.

 When indexing occurs via fullTextSession.index(), purge(), or purgeAll(),
the following properties are used and have the same effect as those discussed previ-
ously:

■ hibernate.search.<indexname>.indexwriter.batch.merge_factor
■ hibernate.search.<indexname>.indexwriter.batch.max_merge_docs
■ hibernate.search.<indexname>.indexwriter.batch.ram_buffer_size

Unless the corresponding .batch property is explicitly set, the value will default to the
.transaction property.

 Why is there a need for two modes: a transaction mode and a batch mode? During
transactional operations (entity insertions, updates, and deletions), you likely want to
limit memory consumption to leave more resources for the rest of the system. You also
want to limit the response time. Keep the merge factor relatively low to limit the num-
ber of concurrent files (segments) opened. In practice, because Hibernate Search
batches changes per transaction, segment files tend to be small, and ram_buffer_size
is rarely attained. During batch mode (that is, when you index or reindex a significant
part of your data), you want to maximize memory consumption and limit the number
of merges to keep index speed as high as possible. You also want to maximize through-
put. Subsequently, you’ll run an optimize() operation to reduce the number of seg-
ments. Unfortunately, there’s no magic formula to estimate the best value for each
setting. Start with the default values, and run performance tests to find the best strat-
egy for your application.

NOTE To gain a better understanding of how these parameters affect searching
and indexing speed, remember these general principles concerning
parameters: Search speed is dependent on the number of files (seg-
ments) the index is spread across. The larger the segment file count, the
slower the search. Indexing speed also is dependent on segment file
count but inversely to the way search speed is affected. That is, as search
speed goes up, indexing speed goes down, and vice versa. The amount of
RAM available also affects these speeds.

By default, Lucene and Hibernate Search store the information on a given segment
in a single file. This approach is named compound file format. It’s possible to store seg-
ments differently. The alternative format spreads information of a given segment
across multiple files. While this approach requires more files and thus more file han-
dlers, it is faster at indexing time (5 percent to 33 percent depending on the condi-
tions) and requires less temporary storage. To build a compound segment, Lucene
creates the individual files and compounds them, temporarily requiring twice the

294 CHAPTER 9 Performance considerations
space. If you aren’t constrained by the number of concurrent file handlers, you can
activate multifile support by using hibernate.search.<indexname>.indexwriter.
use_compound_file = false. Notice that we didn’t use the transactional or batch
prefix. While this is possible, it makes little sense to mix compound and noncom-
pound segments.

 A couple of additional properties are worth mentioning:

■ hibernate.search.<indexname>.indexwriter.max_field_length
■ hibernate.search.<indexname>.indexwriter.

➥transaction.term_index_interval

max_field_length limits the number of terms (words) that will be indexed for a
given field. If a property contains more terms than allowed by max_field_length, the
extra ones are silently ignored and are not indexed. This sounds like bad behavior,
but this limit is put in place to avoid receiving OutOfMemoryException. If you happen
to have properties with large numbers of terms, and you want to index all of them,
make sure you adjust this setting so that you won’t run into an OutOfMemoryExcep-
tion. This setting should not be prefixed by either transaction or batch. The
default value is 10000.

 term_index_interval is an expert setting that lets you trade memory for faster
queries. When this number is low, more memory is consumed but access to a term in
the index is faster. When this value is high, less memory is consumed but finding a
term in the index is slower. The default value is 128. This means that you can have a
maximum of 128 terms to scan before finding the expected one. In large indexes
where queries usually involve the same subset of terms (typical of a user-entered
query), this setting will have little impact because Lucene will spend more time pro-
cessing frequency and positional data. On a small index involving numerous uncom-
mon query terms (for example, those generated by a RangeQuery or a
WildcardQuery), looking for terms in the index is a costly operation. This setting can
impact performance in this case. It’s unlikely that you’ll need to tune this property.
The configuration can be different between transaction and batch.

 Some additional configurations such as max_buffered_docs and max_buffered_
delete_terms are available but are considered fairly advanced and rarely useful. Refer
to the Hibernate Search reference documentation and the Lucene documentation
for the latest information.

 By default, Hibernate Search uses one Lucene index per entity type. While this
default is good enough most of the time, you might need to split your index data into
more than one index per entity. Hibernate Search calls this operation sharding, and
we’ll look at it next.

9.4 Sharding your indexes
Sharding is the idea of splitting a set of data across multiple physical storage places
instead of one while still making data access behave as if there were a single storage

295Sharding your indexes
place. In the case of Hibernate Search, we split indexed data for a given entity type
into several physical Lucene indexes.

NOTE WHAT DOES SHARDING MEAN? The definition of shard is “a piece of a bro-
ken pot or ceramic or glass vessel.” Surely you don’t want your data to look
like broken pottery. Sharding is a term widely used at Google to describe
partitioning (data, CPU, team, bread, and so on). This term seems to be
slowly spreading into the data partitioning industry as a whole.

Why would you need to do that? There are several reasons for splitting index data and
many reasons for not doing it. The best advice is to avoid sharding altogether unless
you need to use it. Generally speaking, Hibernate Search needs to apply a query to
multiple indexes at the same time, which tends to slow down queries. In addition,
Lucene needs to open more indexes (and more files) at the same time. The warning
being given, let’s look at the benefits of sharding:

■ Working around performance limits
■ Enforcing legal or security partitioning
■ Increased maintainability

Some people use Lucene indexes as a massive database (they store values in the
index) and have found Lucene more efficient for large-scale use when the index data
is split into several subindexes. While this is an interesting approach for specific situa-
tions, the authors want you to guard against considering Lucene as a database.
Lucene is not a database for many reasons (see section 1.4.2). This is not the best use
case for sharding.

 Another performance-related factor affected by sharding is locking. Every time an
index is changed, Lucene requires a global lock. Only one thread can update an
index at a given time. As you will see in chapter 10, this can be quite problematic for
systems that are heavily written to. Using sharding makes the lock more specific: If
Hibernate Search needs to update one shard, it doesn’t have to lock the other ones
and will push the scalability barrier a bit further. This is particularly applicable if you
use in-memory distributed Lucene directories.

 Not all use cases are related to performance. For legal or practical reasons, you
might have to separate data of a given category from the data of another category (see
figure 9.1):

■ Data related to different geographical regions (one index per country)
■ Data related to different customers (privacy laws)
■ Data related to different companies

For reasons the authors have yet to understand, these kinds of physical separations
tend to keep lawyers and customers happier, especially in a software as a service
environment.

 The third reason why sharding might be beneficial is maintenance. Splitting index
data among several physical indexes makes each individual index smaller. Copying an

296 CHAPTER 9 Performance considerations
index is faster (and thus simpler), and rebuilding an individual index, if needed, is
faster as well and does not impact other indexes.

 Let’s explore the configuration side of sharding.

9.4.1 Configuring sharding

Sharding is disabled by default but can be enabled per entity type. The first step is to
determine the number of shards you’ll split your data into. The number of shards is a
relatively static choice that requires you to restart the Hibernate SessionFactory or
EntityManager when changed and can possibly require reindexing. We recommend
that you choose an appropriate value up front.

TIP Don’t use too large a shard number. Reading from multiple shards is
slower than reading from a single index.

You can configure the number of shards through the sharding_strategy.nbr_
of_shards property. This property is defined per index, as shown in listing 9.14.

 By default, Hibernate Search will create one Lucence index per shard and name it
index_name.index_nbr. For example, if you use an FSDirectoryProvider, the direc-
tory names for Item indexes assuming three shards will be:

■ com.manning.hsia.dvdstore.model.Item.0
■ com.manning.hsia.dvdstore.model.Item.1
■ com.manning.hsia.dvdstore.model.Item.2

Figure 9.1 Use one physical index
per distributor to index items.

297Sharding your indexes
It’s possible to override these defaults and even change the root directory for each
shard. Listing 9.14 shows how to do that. Each shard configuration is held under
hibernate.search.index_name.shard_nbr. All the configuration properties dis-
cussed in section 5.1.1 and earlier in this section can be used on each individual shard.

hibernate.search.com.manning.hsia.dvdstore.model.
➥Item.sharding_strategy.nbr_of_shards 3

hibernate.search.com.manning.hsia.dvdstore.model.Item.0.indexBase
➥ /mnt/shard0/indexes/virtdir0

hibernate.search.com.manning.hsia.dvdstore.model.Item.0.indexName
➥ Item0

hibernate.search.com.manning.hsia.dvdstore.model.Item.1.indexBase
➥ /mnt/shard1/indexes/virtdir1

hibernate.search.com.manning.hsia.dvdstore.model.Item.1.indexName
➥ Item1

hibernate.search.com.manning.hsia.dvdstore.model.Item.2.indexBase
➥ /mnt/shard2/indexes/virtdir2

hibernate.search.com.manning.hsia.dvdstore.model.Item.2.indexName
➥ Item2

Overriding defaults can be useful if you wish to store shards on different physical hard
drives. Each root directory pointing to each individual hard drive is configured by the
indexBase property. Running on different physical hard drives has the benefit of
reducing contention for input/output and can increase performance. This is heavily
dependent on your hardware. If you don’t like the default index-naming scheme, you
could change the directory names using the indexName property suffix.

 Sometimes you want to define the same configuration for all shards of a given
entity type. You can do just that by using the prefix hibernate.search.[index_name]
(notice the absence of a shard number). The common property will be available to
each shard, just as a property shared across all indexes is placed under hiber-
nate.search.default.

 Now that we’re using several shards, Hibernate Search needs to decide in which
shard a new object must be indexed.

9.4.2 Choosing how to shard your data

Hibernate Search needs to decide in which shard a given object instance will be
indexed. This task belongs to the IndexShardingStrategy object. By default, Hiber-
nate Search hashes the string representation of your id and applies to the hash a mod-
ulo by the number of shards. This should ensure a fairly even distribution of data
entries among all the shards.

 This approach likely won’t satisfy your needs and has a few drawbacks. For exam-
ple, adding more shards to an index requires a complete reindexing (because the

Listing 9.14 Configuring index sharding, placing each shard on its own disk

Number of shards

Shard specific property

298 CHAPTER 9 Performance considerations
hash method will no longer return the same shard number for a given id). Fortu-
nately, you can customize how Hibernate Search chooses the right shard by imple-
menting your own IndexShardingStrategy. This interface is responsible for
returning the shard in which an object has to be indexed and the list of shards to con-
sider when an object has to be removed from the index. Typically, as shown in
listing 9.15, a strategy chooses a given shard based on a business property.

Configuration file
hibernate.search.com.manning.hsia.dvdstore.model.
➥Item.sharding_strategy.nbr_of_shards 3

hibernate.search.com.manning.hsia.dvdstore.model.
➥Item.0.indexName Item-Universal

hibernate.search.com.manning.hsia.dvdstore.model.
➥Item.1.indexName Item-Sony

hibernate.search.com.manning.hsia.dvdstore.model.
➥Item.2.indexName Item-Warner

hibernate.search.com.manning.hsia.dvdstore.model.
➥Item.sharding_strategy
 com.manning.hsia.dvdstore.util.DistributorShardingStrategy

hibernate.search.com.manning.hsia.dvdstore.model.Item.
➥sharding_strategy.distributors.1 0

hibernate.search.com.manning.hsia.dvdstore.model.Item.
➥sharding_strategy.distributors.2 1

hibernate.search.com.manning.hsia.dvdstore.model.Item.
➥sharding_strategy.distributors.3 2

public class DistributorShardingStrategy
 implements IndexShardingStrategy {
 private static final String RADIX = "distributors.";
 private DirectoryProvider<?>[] providers;
 private HashMap<String, Integer> providerIdPerDistributor;

 public void initialize(
 Properties properties,
 DirectoryProvider<?>[] providers) {

 this.providers = providers;
 this.providerIdPerDistributor =
 new HashMap<String, Integer>();

 //find all properties starting with 'distributors.'
 //the suffix is the distributor id,
 //the value is the shard id

 Enumeration<?> propertyNames =
 properties.propertyNames();

 while (propertyNames.hasMoreElements()) {

 Object key = propertyNames.nextElement();

Listing 9.15 Implementing a property-based sharding strategy

Functional shardingB

Sharding strategy
implementation class

C

Properties used
by the strategy

D

Initialize the strategy

One directory
provider per shard

E

Read available
property names

F

299Sharding your indexes
 if (! String.class.isInstance(key)) {
 continue;
 }

 String propertyName = (String) key;
 if (propertyName.startsWith(RADIX)) {
 String distributorId =
 propertyName.substring(
 RADIX.length(),
 propertyName.length());

 String providerId =
➥properties.getProperty(propertyName);
 providerIdPerDistributor.put(
 distributorId,
 Integer.parseInt(providerId)
);
 }
 }
 }

 public DirectoryProvider<?>[] getDirectoryProvidersForAllShards() {
 return providers;
 }

 public DirectoryProvider<?> getDirectoryProviderForAddition(Class<?>
 ➥entityType,
 Serializable id, String idInString, Document document) {

 //make sure it is used on the right class
 assert entityType.getName().equals(Item.class.getName());

 String distributorId =
 document.get("distributor.id");
 Integer providerIndex =
 providerIdPerDistributor.get(distributorId);

 if (providerIndex == null) {
 throw new IllegalArgumentException(
 "Distributor id not found: " + distributorId);
 }

 if (providerIndex > providers.length) {
 throw new IllegalArgumentException(
 "Shard " + providerIndex + " does not exists");
 }

 return providers[providerIndex];
 }

 public DirectoryProvider<?>[] getDirectoryProvidersForDeletion(
 Class<?> entity, Serializable id, String idInString) {
 return providers;
 }
}

B Assign a functional subset of the data per shard. C This is the fully qualified class
name of the IndexShardingStrategy implementation. D Assign one distributor id to
a shard id. You can use the property-naming scheme of your choice. E The initialize

Work around the poor
design of PropertiesG

Providers for queries
and optimizeH

Read discriminator
from document

I

Write defensive code

Provider where the
document is added

J

Providers where the
document is deleted1)

300 CHAPTER 9 Performance considerations
method is provided a list of ordered DirectoryProviders (one per shard). (F Prop-
erties can be read. A property name is composed of only its suffix (that is, it excludes
hibernate.search.index_name.shard_nbr.). You can access all property names
through the Properties API. G The Properties API is neither the most intuitive nor
the most type-safe. Be sure to use defensive code. H You must return the list of provid-
ers on which queries (or the optimize operations) are run, usually the full list of pro-
viders. I Documents can be used as a payload to pass the discriminator value (in our
case the distributor id). J Return the DirectoryProvider the document will be
added to. 1) Return the list of providers an entity deletion will be applied to, gener-
ally all the providers because the strategy usually doesn’t have enough information to
restrict the list further.

 When Hibernate Search indexes an object, it lets the strategy determine which
directory provider to use (see figure 9.2). In our case, this choice is driven by con-
figuration.

 Make sure you embed in the document the field or fields on which you want to
base your shard strategy. Unfortunately, Hibernate Search cannot pass around the
entity instance; that would prevent Hibernate Search from playing nicely in a clus-
tered environment, as we will show in chapter 10. This isn’t a problem, because the
Document instance will help you carry on the information.

 The delete operation is applied to all DirectoryProviders returned by the get-
DirectoryProvidersForDeletion() method. A safe implementation returns all
shards (because of the lack of knowledge). But if your implementation knows where a
given object is indexed, it’s preferable to return the specific directory provider (or a
subset of directory providers) to speed up the delete operation (see figure 9.3).

Figure 9.2 Adding an entity to a sharded index. One shard
is chosen by the sharding strategy.

301Sharding your indexes
When querying, Hibernate Search applies the Lucene query on all DirectoryProvid-
ers returned by getDirectoryProvidersForAllShards() (see figure 9.4). This is also
the list of directory providers on which optimization is applied.

 Sharding in Hibernate Search suffers from one main drawback. It’s not possible to
create shards on the fly. The number of shards must be defined at configuration time
and their respective DirectoryProviders configured. It’s preferable to shard by a set
of properties whose value set is fairly small and evolves in a controlled manner. Also

Figure 9.3 Remove is applied to a subset of the shards.

Figure 9.4 Queries are executed on all shards to retrieve
all matching data.

302 CHAPTER 9 Performance considerations
make sure your strategy can add new shards over time. A sharding strategy based on a
business property can meet these constraints. A new value will be indexed in a new (or
existing) shard, but existing values still point to their respective existing shard. This is
important because it doesn’t require that you reindex everything when a new shard is
added. The default hash implementation doesn’t satisfy this criteria and requires com-
plete reindexing when new shards are added.

 When you need to add a new shard, you must change the configuration (see
listing 9.15) and build a new SessionFactory or EntityManagerFactory to ensure
the new properties are used. It’s possible to avoid this explicit change and reloading
by creating enough shards to absorb the load and by using a sharding strategy that’s
both stable for existing values and able to transparently compute a shard id for new
values. Listing 9.16 is an example of such a strategy.

public class AutomaticDistributorShardingStrategy implements
 IndexShardingStrategy {

 private DirectoryProvider<?>[] providers;
 private int shardNbr;

 public void initialize(Properties properties,
 DirectoryProvider<?>[] providers) {
 this.providers = providers;
 this.shardNbr = Integer.parseInt(
 properties.getProperty("nbr_of_shards"));
 }

 public DirectoryProvider<?>[] getDirectoryProvidersForAllShards() {
 return providers;
 }

 public DirectoryProvider<?> getDirectoryProviderForAddition(
 Class<?> entityType, Serializable id,
 String idInString, Document document) {
 assert entityType.getName().equals(
 Item.class.getName());

 String distributorId = document.get("distributor.id");
 int providerIndex =
 Integer.parseInt(distributorId) - 1;

 if (providerIndex < shardNbr) {
 throw new IllegalShardException(
 "The number of distributor are higher than available shards");
 }
 return providers[providerIndex];
 }

 public DirectoryProvider<?>[] getDirectoryProvidersForDeletion(
 Class<?> entity, Serializable id, String idInString) {
 return providers;
 }
}

Listing 9.16 A sharding strategy that can absorb new shards transparently

Ensure correct
class is used

Automatically build
shard number

B

Ensure we never go overC

303Testing your Hibernate Search application
An automatic rule builds the shard number from the distributor id. This rule is stable
and doesn’t change over time B. The total number of shards must be high enough to
avoid out-of-bounds settings C.

 Sharding is an advanced concept that’s useful in specific scenarios. This approach
can be quite hard to handle, and some subtle bugs can occur in the sharding strategy.
Don’t jump too early to such a design, and make sure you have a compelling reason
before sharding your index.

 In this chapter, the authors have insisted on not doing premature optimization.
One of the key tools for avoiding premature optimization and for ensuring that an
optimization doesn’t break things is testing. This is the focus of the next section.

9.5 Testing your Hibernate Search application
Testing has become an essential part of development. However, the more frameworks
and libraries your application uses, the harder it usually becomes to test parts of the
application in isolation. In this chapter we’ll explore various techniques for testing the
behavior of your application once you decide to use Hibernate Search. Your choice
will depend on your goals and to a great extent your testing philosophy. We’ll also
explore testing as a tool for measuring performance. Finally we’ll look at how your
search engine reacts to real users.

9.5.1 Mocking Hibernate Search

Unit testing ensures that individual pieces of software behave as expected. Their con-
tract is tested individually. Depending on the design of your code, this kind of test can
be achieved with a limited amount of pain by using a mock approach. Mocking is the
idea of simulating objects by mimicking the behavior a real implementation would do
in a particular environment. The Hibernate Search API (querying, indexing) consists
of interfaces and can be easily mocked either manually or by using mock libraries
such as EasyMock (http://www.easymock.org/).

 For Hibernate Search, you’d typically mock the FullTextSession and FullText-
Query APIs in a given test. The tested class will call both the FullTextSession and
FullTextQuery APIs and receive the results from the mock object. This isolates the
tested class from the Hibernate Search library. Listing 9.17 shows an example of
Hibernate Search mocking in a unit test.

import static org.easymock.EasyMock.*;

...

@Test(groups="hibernatesearch")
public void testSearch() throws Exception {

 SearchingAction action = new SearchingActionImpl();

 FullTextQuery query = createMock(FullTextQuery.class);
 FullTextSession session = createMock(FullTextSession.class);

Listing 9.17 Mocking Hibernate Search in unit tests

Static imports make
EasyMock easier

Create raw service
implementation to

be tested Create mock
for each
object used

http://www.easymock.org/

304 CHAPTER 9 Performance considerations
 SearchFactory factory = createMock(SearchFactory.class);

 expect(session.getSearchFactory()).andReturn(factory);
 expect(factory.getAnalyzer(Item.class))
 .andReturn(new StandardAnalyzer());
 expect(session.createFullTextQuery(
 isA(Query.class),
 eq(Item.class))
).andReturn(query);
 expect(query.setProjection("title"))
 .andReturn(query);

 List<Object[]> results = new ArrayList<Object[]>();
 results.add(new Object[] {"The Incredibles"});
 expect(query.list()).andReturn(results);

 SessionHolder.setFullTextSession(session);

 replay(factory);
 replay(query);
 replay(session);

 List<String> titles = action.
 getTitleFromMatchingItems("title:incredibles");

 assert 1 == titles.size()
 : "should have two match, not " + titles.size();
 assert "The incredibles".equals(titles.get(0)) : "The Incredibles";
}

Mocking a service requires the following steps:

1 Create mocks for all objects used by the service you want to test.
2 Define expected calls on the various interfaces and the objects that will be

returned by the mock implementation. This is where you ensure that the Hiber-
nate Search API is used properly (for example, that projection is called on the
right property). This is also where you define fake results. This part is a bit
tedious and can go very deep in the service stack; you might end up mocking a
lot of services.

3 Pass the mock objects to the service. If you use inversion of control, this will be
as simple as calling the appropriate constructors or setters from your service.

4 Activate mock objects. They will listen to specific actions and ensure everything
is used as expected or raise assertion failures otherwise.

5 Execute the service. Mock objects will be called by the service.
6 Test the service results. Part of the contract is tested by the mock objects (the

right methods called with expected parameters and so on), but you can assert
the service output too.

In the authors’ opinion, mocking is not always the best approach. It typically requires
a significant amount of extra work and a deep knowledge of the library you’re mock-
ing, and it doesn’t replace adequate integration tests. EasyMock isn’t easy for

and the expected
results

Define how
SearchFactory
is called

Potentially restrict
input parameters

Should call projection and return self

Build query results

Associate them to
query execution

Pass mock objects to
the service

Prepare mocks for
listening

Service
executed
using mocks

Check results based on mock

305Testing your Hibernate Search application
someone new to mocking to use, and error reports are quite confusing, but this
library is very flexible.

9.5.2 Testing with an in-memory index and database

Unit tests and integration tests are complementary tools that cover slightly different
aspects of the application. Beyond the philosophical difference between a unit test
and an integration test, the key differences between a test suite that people run and a
test suite that people don’t run are speed and ease of configuration (zero configura-
tion being ideal). While some teams mandate running test suites before committing
and back that up with a continuous integration tool, most don’t. If the test suite is too
slow or doesn’t work right out of the box, developers well known for their laziness (a
quality in most cases) will simply skip it and commit broken code.

 It’s possible to do integration testing with Hibernate and Hibernate Search while
keeping speed up and configuration low. By using an in-memory database like:

■ H2 (http://h2database.org)
■ HSQLDB (http://hsqldb.org)
■ Derby (http://db.apache.org/derby)

you can get away with the heavy configuration of a (remote) database, and execution
speed is very fast.

TIP On versions tested by the authors, Derby is significantly slower than the
other two at executing DDL statements (schema and table creation). This
is problematic for unit tests because most of them start with a schema
drop and creation. Derby is significantly faster than an external database
though.

Hibernate shields you from the database differences for the most part by switching
dialects. In the same spirit, instead of using a filesystem-based Lucene directory pro-
vider, use the in-memory directory provider when testing. In this approach, tests are
isolated from one another; a different database instance and a different Lucene direc-
tory instance are created for each test. Before each test, you should populate the data-
base and the index with the data you need to run. You have essentially two
approaches:

■ Run SQL statements using import.sql and manually index the data inserted.
Hibernate Core executes all statements placed in the file named import.sql, but
remember that this file must contain database-specific SQL.

■ Create new objects and persist them through Hibernate. Both the database and
the index will be populated.

To run SQL statements, you can create an /import.sql file in your classpath that con-
tains the various SQL insert statements that initialize the database. Hibernate Core will
execute them when the SessionFactory is created. Alternatively, you can use tools
like DbUnit to define your SQL statements for each test. DbUnit is a JUnit extension

http://h2database.org
http://hsqldb.org
http://db.apache.org/derby

306 CHAPTER 9 Performance considerations
that lets you put a database into a known state before running your tests and lets you
assert the database state after the test has run. You can find more information at
http://www.dbunit.org. When your database is initialized, don’t forget to manually
index data in Lucene, as we’ve shown in section 5.4.2. Otherwise, your index will be
outdated or simply empty.

 Alternatively, you can create an object graph at the beginning of your test and per-
sist it using the Hibernate Core APIs. Both the database and the index will be properly
initialized. With your database in a known state, you can start testing.

 The authors tend to use the latter approach. Hibernate Search handles object
indexing for you, the data population process is independent of the underlying data-
base and database schema (thanks to Hibernate), and a change in the data structure
will be adjusted quickly in your IDE (class refactoring) rather than being manually
tracked.

 Listing 9.18 shows an integration test and its configuration. We use TestNG in this
example, but the principles can easily be applied to JUnit or your favorite unit test
framework. Make sure you place H2 and TestNG in your classpath.

<hibernate-configuration>
 <session-factory>
 <!-- database configuration -->
 <property name="hibernate.connection.driver_class"
 ➥>org.h2.Driver</property>
 <property name="hibernate.connection.url"
 ➥>jdbc:h2:mem:</property>
 <property name="hibernate.dialect"
 ➥>org.hibernate.dialect.H2Dialect</property>
 <property name="hibernate.connection.pool_size">1</property>

 <!-- regenerate DDL -->
 <property name="hibernate.hbm2ddl.auto"
 ➥>create-drop</property>

 <!-- in-memory index -->
 <property name="hibernate.search.default.directory_provider">
org.hibernate.search.store.RAMDirectoryProvider
 </property>

 <mapping class="com.manning.hsia.dvdstore.model.Item"/>
 <mapping class="com.manning.hsia.dvdstore.model.Distributor"/>
 <mapping class="com.manning.hsia.dvdstore.model.Category"/>
 </session-factory>
</hibernate-configuration>

public class HibernateSearchIntegrationTest {

 protected SessionFactory factory;

 @BeforeTest(groups={"hibernatesearch"})
 protected void setUp() throws Exception {
 AnnotationConfiguration configuration =
 new AnnotationConfiguration();

Listing 9.18 Running the test suite in memory

In-memory
database instance

Generate schema
every time

In-memory Lucene
directories

Executed before
every test

http://www.dbunit.org

307Testing your Hibernate Search application
 factory = configuration
 .configure("hibernate-test.cfg.xml")
 .buildSessionFactory();
 postSetUp();
 }

 @AfterTest(groups={"hibernatesearch"})
 protected void tearDown() throws Exception {
 factory.close();
 }

 public void postSetUp() throws Exception {
 Distributor distributor = new Distributor();
 distributor.setName("Manning Video");
 distributor.setStockName("MAN");

 Item item = new Item();
 item.setTitle("Hibernate Search in Action");
 item.setEan("1234567890123");
 item.setDescription(
 "Video version of HSiA, go through tutorials.");
 item.setPrice(new BigDecimal(20));
 item.setDistributor(distributor);

 Session session = factory.openSession();
 session.getTransaction().begin();
 session.persist(distributor);
 session.persist(item);
 session.getTransaction().commit();
 session.close();
 }

 @Test(groups="hibernatesearch")
 public void testSearch() throws Exception {

 SearchingAction action = getSearchingAction();

 List<String> titles =
 action.getTitleFromMatchingItems(
 "title:search");

 assert 1 == titles.size()
 : "should have one match, not " +.size();
 assert "Hibernate Search in Action"
 .equals(titles.get(0)) :
 "right book matches";
 }
}

Because the SessionFactory B is closed, the in-memory database and Lucene in-
memory indexes are discarded. Each test runs with a clear data set.

 In a project, you’ll likely factor out the setUp() and tearDown() methods in an
abstract test case. Each concrete test case will then override postSetUp() to populate
the data as needed for each test case. This test suite executes fast (no input/output is
performed), each test is isolated from the other, and the whole chain is effectively
tested (Hibernate, Hibernate Search, Lucene).

Build the
session factory

Run post
initialization

Clear the factory
after every test

B

Populate the database
before each test

Database and indexes
are populated

Actual test

Run test on
prepopulated dataset

Assert results based
on the dataset

308 CHAPTER 9 Performance considerations
 Unit or integration testing is one thing, but you also need to test in an environ-
ment that’s close to production, which we’ll discuss next.

9.5.3 Performance testing

Performance testing is important for guaranteeing a level of service to customers and
avoiding last-minute surprises when you’re about to launch a new application. There’s
nothing really specific about performance testing with Lucene and Hibernate Search,
but the performance of a search engine is usually closely watched. People are particu-
larly sensitive to speed in this area.

 This section is a simple collection of generic advice on the subject. When you’re
about to prepare a benchmark, make sure you use the same hardware and software
the application will run on in production. If you cannot, try to match them as closely
as possible. Especially watch the following factors:

■ Use the same database version. Optimizers have surprising changes between ver-
sions.

■ Use the same server topology (remote or local database, shared filesystem, and cluster of
application servers). Testing Hibernate Search performance on a local filesys-
tem directory and deploying in production on a network file system directory is
a bad idea. The system will behave differently.

■ Use a similar network. Network performance has a strong impact on database
and Lucene index access times.

When running a performance test, be sure to disable logs, or at least run them at the
level they will be in production. Unless you use an asynchronous log appender, logs
can become the bottleneck in a system. If you identify a bottleneck, you can then
enable logs to refine your measurements.

 Test on realistic use cases, and measure as thoroughly as possible (time, CPU,
memory, network, and so on) in a repeatable way. Ideally, rerun a typical day for your
application. A number of functional focused testing tools are available. Selenium
(http://selenium.openqa.org) is one of them. When measuring speed, check the tar-
geted use case in isolation (for minimal response time) and under stress (at the
expected peak of concurrent users). Running use cases under stress is very important
and shows how the system degrades under pressure. Tools like Apache JMeter (http:/
/jakarta.apache.org/jmeter) let you run the same set of requests and simulate con-
current users.

 When you change a setting or apply one of the tips from this chapter, run the same
tests on the same bench and measure the differences. Brilliant optimizations on paper
don’t always materialize in the real world.

9.5.4 Testing users

In a whole different category, don’t forget to test how users react to your search
engine. Simply by logging searches of given users, their subsequent searches on the

http://selenium.openqa.org

309Summary
same subject, and which information they ended up clicking on, you’ll receive golden
feedback, such as:

■ What people are looking for on your search engine
■ What query they initially used to find that information
■ What workaround they end up using

Design such reporting tools for your search engine, and activate them on a regular
basis. Look at these logs, and incrementally improve your search engine by adjusting
its variables, such as:

■ Creating a list of stop words
■ Setting the boost factors of various properties
■ Activating or deactivating synonymous or approximation analyzers

Repeat this analysis regularly, because people change and their search patterns do too.
 Remember that users don’t always do what they tell you they do. Interviewing users

to define an initial set of rules for the search engine is a good start, but you’ll need to
refine this data with real-life feedback. Although your search engine might return
query results a bit too slowly, it might nevertheless bring the relevant information to
the top each time. This will make your users more productive.

9.6 Summary
This chapter showed you how to optimize Hibernate Search. First, we looked at the
indexing operation, whether for an individual entity, applied concurrently in an
online system, or batched with many other indexing operations. We also looked at
how to make fast queries by using both Hibernate Search and Lucene tricks. We exam-
ined various levels of caching that Hibernate Search uses. Finally, we looked at the
Lucene index structure and at ways to keep this structure optimal for the system,
either manually or transparently. We also looked at sharding, which helps you split
indexing data across several physical Lucene indexes, for either performance, legal,
or maintenance reasons. While sharding should not be overused, it can be quite
handy in some situations. Finally we explored how to test Hibernate Search. There’s
no way to optimize a system without a reliable test environment.

 The next chapter focuses on Hibernate Search scalability and how to make its
search infrastructure scale a cluster of servers.

Scalability: using
Hibernate Search

in a cluster
Most of the book pays little attention to your application architecture because
Hibernate Search is fairly agnostic in that regard. Clustering a Hibernate Search
application is worth mentioning because Hibernate Search makes it very easy to do.
(You will especially see how easy if you’ve previously tried to cluster a plain Lucene
application!)

 When building an application, always keep in mind how well it will scale in the
future, if not the present. The two traditional scalability possibilities are to scale up
and to scale out. These days, emphasis is on the ability to scale out, and for good
reasons. The good old days of doubling performances by increasing the CPU clock

This chapter covers
■ Strategies for clustering Hibernate Search

solutions
■ Details of taking the asynchronous approach
■ Configuring the slave nodes
■ Configuring the master node
310

311Exploring clustering approaches
are over. Traditional big machines have been replaced by clusters of cheap commodity
hardware. Even inside each machine, the war for scaling up is getting lost: Each CPU
nowadays is made of two or more cores, sort of mini-independent CPUs. Every applica-
tion needs to be able to scale out. This chapter describes how applications that use
Hibernate Search can scale out.

10.1 Exploring clustering approaches
Out of the box, Lucene offers no special clustering facilities or capabilities. Every seri-
ous application using Lucene needs to tackle the problem of clustering. Trust the
authors—it can become very complex! Several libraries built on top of Lucene are try-
ing to make clustering easier. Hibernate Search is one of them.

 Fundamentally, we have two different ways of clustering a Lucene application. The
first one is to let every node in your cluster read and write the index. A pessimistic lock
is used to ensure that only one node at a time updates the Lucene index. As you will
see, this approach is not that easy to implement and suffers from a fundamental limit.
A global pessimistic lock must be shared across all nodes in a cluster that are willing to
update a given Lucene Directory. This will limit the scalability of your system. The
second approach is to process all index-writing operations on a dedicated node (or
subset of nodes) and periodically push the information to the nonwriting nodes
(either by replicating the index state or by sharing it).

10.1.1 Synchronous clustering

The classic approach for clustering a Lucene application is to share the same Lucene
directory or directories among all nodes. Each node can read and write on the shared
index. To prevent index corruption, Lucene uses a pessimistic lock, which is acquired
when an index is updated. At a given time, only one node can update a given index.

NOTE Concurrent changes can be applied if they belong to different Lucene
indexes. If you follow the Hibernate Search default approach, one global
lock per entity type is present, and concurrent changes to two different
entity types are possible.

Other nodes must wait for the lock. Figure 10.1 shows this problem. If you use a file-
system directory provider, the lock is materialized as a lock file. Of course, the index
storage must be shared among several nodes, usually on some NFS. Unfortunately,
this approach suffers from problems:

■ Some NFS implementations cache directory contents for faster file discovery
with the assumption that the directory content doesn’t change very often and
that immediate visibility isn’t a concern. Unfortunately, Lucene relies (partially)
on an accurate listing of files.

■ Some NFS implementations don’t implement the “delete on last close” seman-
tic, which is needed by Lucene.

312 CHAPTER 10 Scalability: using Hibernate Search in a cluster
While the situation is much better than it was back in the days of Lucene 1.4, imple-
menting concurrent index writers on an NFS is still quite complex, and bugs in this
area show up regularly depending on your NFS client/server configuration. This work
in progress is known as the NFS saga in the Lucene community. If you go that route, be
sure to read the abundant literature on the subject and pay particular attention to
lock exceptions during your performance and stress tests.

 Some libraries such as Compass propose a database-backed Lucene Directory.
The index and its lock are stored in a specific set of tables in a database. Databases
are known for implementing a good locking scheme, making them less likely to run
into the problems encountered by NFS. Unfortunately, this approach suffers from
flaws as well:

■ In most implementations blobs are used to represent segment files. Blobs are well
known for not being the fastest structure in a database. This is particularly true
of MySQL, which cannot consider a blob as a stream and loads the entire data
flow into client memory.

■ A pessimistic lock must be shared among all read-write nodes. Under intensive write
sessions, most nodes will wait for the lock to transform the clustered applica-
tion into a gigantic nonconcurrent system. The more nodes present, the
higher the risk to hit the scalability limit, because more nodes are competing
for the single lock.

An in-memory distributed Lucene Directory is another interesting approach that
uses the synchronous pessimistic lock solution. You can find a few providers: Giga-
Space, JBoss Cache, and Terracotta are all distributed data solutions that support clus-
tering of Lucene directories. You can easily write a Hibernate Search
DirectoryProvider implementation that wraps any of these solutions. Generally
speaking, these solutions do several things:

Figure 10.1 The index’s pessimistic lock must be
shared among all nodes.

313Exploring clustering approaches
■ They keep a map that represents the current list of Lucene directories locked
and guarantee that only one node can acquire a directory lock at a given time
cluster-wide.

■ They distribute the index content across the cluster.
■ If a directory is too big to fit in memory, only part of the content is retrieved

from the grid. Some kind of garbage collection ensures that only the latest-used
content is kept in local memory for a given node.

This approach still suffers from the theoretical pessimistic lock limit, but advocates
have reported good performance and scalability, especially when indexes are
sharded. Sharding helps to push the scalability limit a bit further. While it’s true that
a cluster-wide lock needs to be acquired when updating a Lucene index, you can
make smaller indexes. By sharding your indexes, you effectively need a finer-grained
lock when updating data. The sharding strategy will acquire locks on only the
impacted shards; concurrent nodes will be able to update other shards of the index.
On big indexes, the in-memory approach will require more network traffic to load
parts of the index that didn’t fit in memory. Likewise, filesystem-based approaches
require more disk input/output. This book won’t cover the configuration details of
using an in-memory approach. Check the documentation of the data-clustering proj-
ect you’re interested in.

 Note that in production, file-based Lucene indexes are by far the most commonly
used deployment mode.

The synchronous approach has the benefit of propagating changes immediately to all
nodes. It works best on:

■ Small and medium-size indexes (especially if you use the in-memory approach)
because network traffic will be needed to retrieve the index.

■ Low– to moderate–write-intensive applications. Pessimistic locks still have to be
acquired cluster-wise.

Full-text searching a data grid
JBoss Cache, aside from storing the Lucene directory in memory in a cluster, has an
interesting additional feature.

You can combine Hibernate Search and JBoss Cache to enable full-text search capa-
bilities on JBoss Cache distributed objects. A JBoss Cache module named JBoss-
CacheSearchable has the ability to index and search Java objects stored in JBoss
Cache. It uses Hibernate Search to index objects when they are added, updated, or
removed from the cache. By reusing the same Hibernate Search mapping annota-
tions, you can make your cached object full-text searchable. Check out the JBoss-
CacheSearchable project at http://www.jboss.org/jbosscache (the current
documentation lives in http://www.jboss.org/community/docs/DOC-10286).

http://www.jboss.org/jbosscache
http://www.jboss.org/community/docs/DOC-10286

314 CHAPTER 10 Scalability: using Hibernate Search in a cluster
The index size depends on a lot of factors, including the amount of RAM you dedicate
to indexes. Try it in your environment. You can use Hibernate Search in a synchro-
nized approach by configuring the DirectoryProvider on each Hibernate Search
node to point to the same physical index storage. However, Hibernate Search comes
with an interesting alternative solution.

10.1.2 Asynchronous clustering

Hibernate Search is fairly agnostic with regard to your architecture. The software is
flexible and extensible enough to support a variety of clustering solutions. The ability
to write your own DirectoryProvider (see section 5.1.5) gives you the freedom to
decide how Lucene indexes are shared among different nodes in the cluster (physi-
cally sharing the same location, replicated across all nodes, and so on). A second
extension point gives you the ability to customize the backend of Hibernate Search
(see section 5.3.4). The backend is responsible for taking a list of indexing operations
and performing them. Instead of writing straight to the Lucene index, an implemen-
tation could use JGroups (the communication library) to delegate the work to a third-
party machine.

 That being said, Hibernate Search doesn’t leave you alone in this ocean of flexibil-
ity. One approach is provided to you out of the box and is promoted by the Hibernate
Search team. This approach is an answer to the pessimistic lock problem and its scal-
ability issues. This architecture is shown in figure 10.2.

 A single node is responsible for writing in the Lucene index or indexes and pushes
changes to all other nodes on a regular basis. This node is named the master in the
Hibernate Search terminology. The other nodes (known as slaves) execute their full-
text queries on a local copy of the index and push their changes to a shared queue
instead of applying them to their local Lucene indexes. The shared queue is exclu-
sively processed by the master. This approach (one master, many slaves) has quite a
few advantages:

■ You no longer have to deal with NFS lock madness. The pessimistic lock is no
longer shared but used exclusively by the master.

■ Slaves that usually host the main application are no longer waiting on the index
lock. We’ve just freed scalability for our application. You can now align many
slave nodes without problem.

■ Slaves execute their full-text queries on a local copy of the index, keeping per-
formance high and independent of the network. A temporary glitch won’t
affect the ability to answer full-text queries.

■ Resource consumption (CPU, memory, I/O) on slave nodes is lower because
indexing is delegated to the master.

Let’s have a look at this approach in a more detailed way.

315Exploring clustering approaches
ANATOMY OF A SLAVE NODE

A slave node behaves and is in many ways just like a regular Hibernate Search applica-
tion. The slave node collects all changes applied to indexed entities per transaction. It
transforms the entity into its Lucene-friendly structure (a Document object). It exe-
cutes full-text queries by opening a Lucene index (or indexes).

 However, instead of sharing the same Lucene index location with all other nodes,
a slave keeps a local copy of the index. Having a local copy guarantees faster query
response time (compared to an NFS solution) and ensures that a slave can serve full-
text queries autonomously. At regular intervals, a slave node obtains a copy of the mas-
ter node index from a shared location. Remember, the slave doesn’t apply changes to
its local index; it passes the work list to the master. The master applies the changes to
the Lucene index.

 Because of this asynchronous approach, there’s a delay between the time an ele-
ment is changed in the database and the time it’s reflected by full-text queries. This

Figure 10.2
Recommended architecture
for asynchronous clustering

316 CHAPTER 10 Scalability: using Hibernate Search in a cluster
delay can be configured, as you will see later in this chapter (it defaults to one hour),
and is the only real drawback of this asynchronous technique. In most applications, a
small delay (30 minutes) is perfectly acceptable for their search engine. As a matter of
fact, many applications update their indexes only once a day. The operation that cop-
ies indexes from the master to a shared location, as well at the operation that copies
indexes from the shared location to each slave node, is smart (or at least not too stu-
pid); only files that have changed are copied over the network. Because Lucene cre-
ates new files when it indexes new elements, most incremental copying will be quite
minimal. Also, it’s worth noting that copies are done asynchronously; your application
is not impacted by the current index copy.

TIP When you optimize an index, the whole structure is shuffled. A copy of a
recently optimized index will take longer than a regular incremental copy.

How does the slave pass the list of changes to the master? Instead of applying the list
of changes to the Lucene index itself, a slave delegates this work to the master. A slave
sends its work list to a JMS queue. Sending the list of changes to JMS (for consumption
by the master node) has a couple of benefits:

■ Once the list of work is sent to JMS, the slave node is fully available to execute
services for the rest of the application.

■ The Lucene pessimistic lock acquisition is no longer connected to the slave
operations. You can add many slave nodes to your architecture without facing
the scalability problem the pessimistic lock acquisition causes in a synchronous
approach.

As you may recall from section 5.3.3, Hibernate Search can enable asynchronous
mode inside a single VM. This approach helps to reduce the bonds between the appli-
cation’s main processes and the pessimistic lock acquisition but is inherently limited:

■ The VM is still responsible for indexing data into Lucene. This consumes
resources from the main application.

■ To limit the risks of receiving an OutOfMemoryException, the asynchronous
queue has to be limited. When the limit is reached, subsequent indexing is
done synchronously until the queue resorbs.

These limitations are not present in an inter-VM asynchronous mode like JMS. Espe-
cially there is no risk of OutOfMemoryException errors.

 Why did the Hibernate Search team choose JMS over another message service? JMS
is an easily accessible standard that’s widely adopted and has rock-solid implementa-
tions on the market, both proprietary and open source. It’s quite easy to introduce it
in an organization. Depending on your JMS provider configuration, JMS provides
interesting features such as guaranteed delivery, message persistence, transactional
support, and so on. If your architecture cannot use JMS, replacing the inter-VM asyn-
chronous mechanism in Hibernate Search is quite easy. On the slave side, two classes
are responsible for JMS delivery, currently totalling less than 200 lines of code (import

317Exploring clustering approaches
and comments included). Rewriting this part of the code is not an insurmountable
task. If you do so, please consider contributing it to the Hibernate Search project!

 Slaves have smartly delegated the hard work to the master. Let’s have a look at this
poor soul.
ANATOMY OF A MASTER NODE

The master node is responsible for updating the Lucene index or indexes and for
pushing updated versions of these indexes on a regular basis. In that regard, the mas-
ter is the only VM that locks the index. All the problems that we’d face by using a file-
system Lucene Directory stored on an NFS are gone.

 The master listens to the JMS queue through a message-driven bean (MDB), pro-
cesses each indexing work list (one work list per message), and applies the work to the
Lucene index or indexes.

 On a regular basis, the master node copies the index onto a shared location, the
location where slaves grab the latest version of the index. The copy is usually done
with the same frequency as the slave copy (it defaults to one per hour). Note that dur-
ing the copy operation, the master suspends the indexing operation (for this particu-
lar index directory) to prevent any corruption and ensure that a consistent index is
copied. Future versions of Hibernate Search will likely lift this limitation.

 What’s going on if the master node crashes? After all, it looks a lot like a single
point of failure in our system. The first thing to notice is that if the master node fails,
slave nodes continue to serve full-text queries and push changes that need indexing.
For them, it’s almost business as usual. The only different is that changes are no lon-
ger pushed back to the local index copy. If the master node crashes in the middle of
an indexing process, the JMS message corresponding to the indexing work list is
rolled back to the queue (more precisely, it’s never considered consumed). When the
node is brought back online, the same message is reprocessed, and your system
quickly catches up. Because there is no true update in Lucene (updates are really
deletes followed by inserts), it’s safe to run the same set of operations multiple times.
If you think that keeping a master node down for too long is a problem in your appli-
cation, you can prepare a second master node and keep it inactive. For example, the
passive master might not listen to the work queue. If your active master node goes
down and cannot be brought back online, simply activate the passive node by making
it listen to the JMS work queue. Make sure the old active node doesn’t go back online
(or at least turn it passive by making it no longer listen to the queue).

 The master node is really stateless in that regard. What happens if the index direc-
tory gets corrupted for whatever reason? You can reindex your data offline using the
technique described at section 5.4.2. Place the newly reindexed structure on the mas-
ter node, and reactivate the JMS queue consumption.
VARIATIONS

While Hibernate Search provides this asynchronous architecture proposal out of the
box, nothing prevents you from adjusting it to your needs. Hibernate Search provides
the necessary hooks to do just that.

318 CHAPTER 10 Scalability: using Hibernate Search in a cluster
 As mentioned before, you can replace the asynchronous mechanism to best suit
your needs. If JMS is not your cup of tea, you can implement a BackendQueueProces-
sorFactory (and its Runnable companion) and configure it as described in
section 5.3.4.

 The way Lucene indexes are stored is also customizable if necessary. Perhaps the
idea of copying index structures onto every node isn’t the strategy you have in mind.
You can very well implement you own DirectoryProvider object that shares the
Directory structure on the same physical storage for all slaves (see figure 10.3). While
searches might be slower because of the remote I/O cost, you save quite a lot of stor-
age and make slave nodes truly stateless.

Alternatively, you could consider sharing the read-only version of the index through
an in-memory distributed cache such as GigaSpace, Terracotta, or JBoss Cache. All
that is required is writing a custom DirectoryProvider.

 You should have a pretty good understanding of how clustering works in Hiber-
nate Search. Now let’s see how to configure it.

10.2 Configuring slave nodes
The next two sections will guide you through the configuration of the slave and mas-
ter nodes. We’ve chosen to show the configuration using JBoss Application Server
(AS) 5, but most of the process is fairly standard Java EE configuration. Refer to your
application server or JMS provider for more information. Figure 10.4 describes the
network topology we’ll use in this configuration example.

 We’ll now walk through the configuration of a slave node. The first step is to
enable the JMS backend in the slave configuration.

Figure 10.3 Variant where slaves share the same read-only copy of the index

319Configuring slave nodes
10.2.1 Preparing the backend

Slaves send the list of work to a unique JMS queue. Our first step is to configure Hiber-
nate Search to send messages to the right queue using the right JNDI initial context.
Let’s check the configuration described in listing 10.1.

<persistence-unit name="dvdstore-catalog">
 <jta-data-source>java:/DefaultDS</jta-data-source>
 <properties>
 <!-- regular Hibernate Core configuration -->
 <property name="hibernate.dialect"
 ➥value="org.hibernate.dialect.H2Dialect"/>
 <property name="hibernate.hbm2ddl.auto" value="create-drop"/>

 <!-- Hibernate Search configuration -->
 <!-- JMS backend -->
 <property name="hibernate.search.worker.backend"
 value="jms"/>
 <property name="hibernate.search.worker.jndi.url"
 value="jnp://master:1099"/>
 <property name="hibernate.search.worker.jms.connection_factory"
 value="/ConnectionFactory"/>
 <property name="hibernate.search.worker.jms.queue"
 value="queue/hibernatesearch"/>
 </properties>
</persistence-unit>

Select the jms backend B rather than the default lucene. Point to the URL the master
JNDI URL is available to C. The port can be configured in conf/jboss-service.xml in
the master server configuration. Define the JMS ConnectionFactory JNDI name D. In
JBoss AS 5, the connection factory names can be configured in deploy/messaging/
connection-factories-service.xml. Configure the JNDI name of the queue the work list
will be pushed to E. This queue is shared among slaves and master as a communica-
tion point.

Listing 10.1 Send message to the right queue

Figure 10.4 Topology of the JMS-based master/slave example

Use the JMS
backend

B

JNDI URL the
queue is
looked up

C

JMS queue
JNDI name E

D

Connection
factory JNDI
name

jnp://master:1099"/

320 CHAPTER 10 Scalability: using Hibernate Search in a cluster
 In some environments (for example, in a plain Java SE environment), you might
need to configure additional properties of the JNDI context above what has been done
in listing 10.1. You can pass the JNDI factory class name as well as the JNDI URL using
the following properties:

■ hibernate.search.worker.jndi.class, which corresponds to the java.nam-
ing.factory.initial property (typically org.jnp.interfaces.NamingCon-

textFactory).
■ hibernate.search.worker.jndi.url, which corresponds to the java.nam-

ing.provider.url property (typically jnp://server:1099 in JBoss AS). The
port can be changed in your JBoss AS server configuration directory in conf/
jboss-service.xml (check the org.jboss.naming.NamingService MBean
configuration).

Beyond these default properties, you can pass any property to the JNDI InitialContext
object by concatenating the property name after hibernate.search.worker.jndi. For
example, to set java.naming.factory.url and pass it to the InitialContext object,
use the following syntax:

Pass java.naming.factory.url to the InitialContext object
hibernate.search.worker.jndi.java.naming.factory.url
➥ org.jboss.naming:org.jnp.interfaces

The approach shown in listing 10.1 sends messages to the queue by connecting to the
server queue directly. You can set up more sophisticated approaches that involve send-
ing the message to a local queue and then have the JMS provider bridge messages to
the server queue transparently. This more sophisticated approach is recommended to
ensure that slave nodes can work even if the master node goes down. The configura-
tion for this solution is dependent on your JMS provider and is beyond the scope of
this book. Please refer to your JMS provider documentation for more information.

Regardless of the approach you choose, the knowledge you gained from this chapter
is still relevant because the technique doesn’t fundamentally change the configura-
tion of Hibernate Search.

 The next step is to make sure slaves get the latest index directory from the master.

Running two instances of JBoss AS on the same machine
If you have to run two instances of JBoss AS on the same machine, you’ll need to
remap some of the ports (including the JNDI port). This process is described on the
JBoss wiki, but the following blog post has a concise how-to description: http://
blog.emmanuelbernard.com/2008/08/remotely-send-and-consume-messages-
with.html.

jnp://server:1099
http://blog.emmanuelbernard.com/2008/08/remotely-send-and-consume-messages-with.html
http://blog.emmanuelbernard.com/2008/08/remotely-send-and-consume-messages-with.html
http://blog.emmanuelbernard.com/2008/08/remotely-send-and-consume-messages-with.html
http://blog.emmanuelbernard.com/2008/08/remotely-send-and-consume-messages-with.html

321Configuring slave nodes
10.2.2 Preparing the directory providers

We discussed how to use DirectoryProviders in a cluster in section 5.1.4. If you want
a more detailed explanation of the configuration, refer to chapter 5. We’ll simply
complete our slave node configuration (see listing 10.2). Let’s assume that /mnt/
share is a shared drive where the master node pushes stable versions of the index
directories.

<persistence-unit name="dvdstore-catalog">
 <jta-data-source>java:/DefaultDS</jta-data-source>
 <properties>
 <!-- regular Hibernate Core configuration -->
 <property name="hibernate.dialect"
 value="org.hibernate.dialect.H2Dialect"/>
 <property name="hibernate.hbm2ddl.auto"
 value="create-drop"/>

 <!-- Hibernate Search configuration -->
 <!-- JMS backend -->
 <property name="hibernate.search.worker.jndi.url"
 value="jnp://master:1099"/>
 <property name="hibernate.search.worker.backend"
 value="jms"/>
 <property name="hibernate.search.worker.jms.connection_factory"
 value="/ConnectionFactory"/>
 <property name="hibernate.search.worker.jms.queue"
 value="queue/hibernatesearch"/>

 <!-- DirectoryProvider configuration -->
 <property name="hibernate.search.default.directory_provider"

value="org.hibernate.search.store.FSSlaveDirectoryProvider"/>
 <property name="hibernate.search.default.refresh"
 value="1800"/>
 <property name="hibernate.search.default.indexBase"
 value="/Users/prod/lucenedirs"/>
 <property name="hibernate.search.default.sourceBase"
 value="/mnt/share"/>
 </properties>
</persistence-unit>

In this scenario, we read all our indexes from /mnt/share; this directory contains
one subdirectory per entity indexed because we use the default Hibernate Search
configuration. Every 30 minutes (1800 seconds), the master directories are copied to
the local slave.

NOTE Each DirectoryProvider (one per index) is responsible for copying its
master version. This is not a global operation that copies all indexes. For
example, you could decide that the distributor index can be copied only
every three hours, whereas the item index is copied every 30 minutes.

Listing 10.2 Completing the slave node configuration

Slave
directory
provider

Copy from
the master
every 30
minutes

Directory where master
indexes are read from

Local directory
where indexes are

copied to

jnp://master:1099"/

322 CHAPTER 10 Scalability: using Hibernate Search in a cluster
The copy is performed asynchronously and doesn’t affect queries processed by the
slave. When the copy is finished, the new version becomes the one actively used by the
slave node. This means that at a given time, your hard drive contains two versions of
the index: the active version and the version being copied. These two versions are
placed in the index directory under the directories named 1 and 2. The Directory-
Provider determines which directory is the active one.

 Our slave nodes are configured and ready, but they need the master to do the
actual indexing work. Let’s see how to configure the master node.

10.3 Configuring the master node
The master is typically a stripped-down version of your application that contains the
message consumer (an MDB), your domain model (the Hibernate Search mapping
configuration), and the persistence unit (either the SessionFactory or the Entity-
ManagerFactory configuration). The master can alternatively be the complete version
of your application and also act like a slave (that is, answering HTTP requests from
your customers). Be careful, because the configuration of a master is different than
that of the slave. If you deploy the master node but still configure it to use the JMS
backend, the MDB will simply consume a message, re-create it, and put it back into the
queue. Not so useful.

TIP You can deploy both a slave node and a master node in the same JBoss AS
instance. While you technically lose the CPU, memory, and input/output
isolation, you still benefit from the ability to avoid receiving an OutOf-
MemoryException during heavy write periods provided that your JMS pro-
vider overflows messages on disk. Be careful not to deploy the MDB on
the slave nodes.

We’ll walk through the master node configuration. First we’ll see how to build the
MDB, then we’ll explain how to configure the backend, and finally we’ll show how to
enable the right directory providers.

10.3.1 Building the message consumer

Slave nodes send their work list into a JMS message. The easiest way to consume these
messages in a Java environment is to use a message-driven bean. While Hibernate
Search doesn’t provide the MDB code, it provides an abstract class your MDB can
extend. Let’s have a look at a typical MDB implementation in listing 10.3.

@MessageDriven(activationConfig = {
 @ActivationConfigProperty(propertyName="destinationType",
 propertyValue="javax.jms.Queue"),
 @ActivationConfigProperty(propertyName="destination",
 propertyValue="queue/hibernatesearch")
 })
 public class MDBSearchController

Listing 10.3 MDB implementation consuming slave messages

Read messages from a JMS queue

JNDI name of
the queue

323Configuring the master node
 extends AbstractJMSHibernateSearchController
 implements MessageListener {
 @PersistenceContext private EntityManager em;

 @Override
 protected void cleanSessionIfNeeded(Session session) {
 //nothing to do container managed
 }

 @Override
 protected Session getSession() {
 return (Session) em.getDelegate();
 }
}

AbstractJMSHibernateSearchController extracts the index work list from the mes-
sage and passes this work list to the right SearchFactory. To access the SearchFactory
object, this class needs to access the Hibernate Session and requires you to override
two methods: getSession() and cleanSessionIfNeeded(). In a managed environ-
ment like Java EE, it’s quite easy to get the Session or the EntityManager injected for
you, and you just need to pass it along. If you happen to run your application in a non-
managed environment, simply create a new session in getSession().

 When AbstractJMSHibernateSearchController is done with the session object, it
passes it back to cleanSessionIfNeeded(). If you passed a session managed by the
environment, you have nothing to do here. If getSession() explicitly created a ses-
sion object, this session should be closed and discarded in cleanSessionIfNeeded().

 In Java EE and EJB 3.0, it’s quite easy to mark a class as an MDB; use the @Message-
Driven annotation and point to the queue that needs to be consumed. Make sure you
mark your class as implementing MessageListener in order for the container to pick
it up as an MDB. You do not need any additional deployment descriptor. Bundle your
domain model classes, your Hibernate or Java Persistence configuration file, and the
MDB class into a JAR. Bundle this JAR into an EAR that contains Hibernate Search and
Lucene JARs (and Hibernate Core dependencies if you run outside JBoss AS) in a
directory named lib. See listing 10.4 for a description of the structure.

dvdstore.EAR
 |- dvdstore.JAR
 |- com/manning/hsia/dvdstore
 |- model ...
 |- master
 |- MDBSearchController.class
 |- META-INF
 |- persistence.xml
 |- lib
 |- hibernate-search.jar
 |- lucene-core.jar
 |- (other dependencies)

The next step is to configure the queue into which messages are sent.

Listing 10.4 Structure of the deployment unit for the master node

Extend abstract
helper class

Implement the Java EE interface

Clean the
session if
needed

Provide access to
the session

Deploy an EAR without a
deployment descriptor

Include the domain
model classes

MDB class

Hibernate and Hibernate Search configuration

Hibernate Search and Lucene JARs

Hibernate dependencies if outside JBoss AS

324 CHAPTER 10 Scalability: using Hibernate Search in a cluster
10.3.2 Preparing the master queue

Configuring the master queue is entirely dependent on your JMS provider. Make sure
you carefully evaluate criteria such as message persistence, reliability, and security
when you configure the queue.

 The following configuration is a simple queue declaration in JBoss AS 5.0 based on
a fresh install. This description doesn’t cover advanced topics such as message persis-
tence or security. To add a new queue in JBoss AS, go to your configuration directory.
Configuration directories are located in $JBOSS_HOME/server. In most cases, you’ll
use the default configuration directory ($JBOSS_HOME/server/default). Open
deploy/messaging/destinations-service.xml, and add the following code fragment
inside the server tag:

<server>

 <mbean code="org.jboss.jms.server.destination.QueueService"
 name="jboss.messaging.destination:service=Queue,
 ➥name=hibernatesearch"
 xmbean-dd="xmdesc/Queue-xmbean.xml">

 <depends optional-attribute-name="ServerPeer">
 ➥jboss.messaging:service=ServerPeer</depends>
 <depends>jboss.messaging:service=PostOffice</depends>

 </mbean>
 ...
</server>

Defining the queue is necessary only on the master node. You can pretty much add
this fragment without change. If you want to rename the queue, be sure to replace
hibernatesearch in the MBean name with the queue name of your choice. By
default, queues are exposed in JNDI in queue/[queue name]. You can override this if
needed, but the authors recommend against it. Doing so makes it harder for other
people to understand your JBoss AS configuration, and the benefits aren’t clear.
Please refer to the JBoss AS documentation for more information.

 You can also change the JNDI name where the JMS connection factory is published.
By default, it’s published at /ConnectionFactory, and this is where we look it up in
the slave nodes (hibernate.search.worker.jms.connection_factory). To change
it, edit the file deploy/messaging/connection-factories-service.xml and add a new
binding name.

 <mbean code="org.jboss.jms.server.connectionfactory.ConnectionFactory"
 name="jboss.messaging.connectionfactory:service=ConnectionFactory"
 xmbean-dd="xmdesc/ConnectionFactory-xmbean.xml">
 <depends optional-attribute-name="ServerPeer">
 ➥jboss.messaging:service=ServerPeer</depends>
 <depends optional-attribute-name="Connector">
 jboss.messaging:service=Connector,transport=bisocket
 </depends>
 <depends>jboss.messaging:service=PostOffice</depends>
 <attribute name="JNDIBindings">

Defines the
queue name

325Configuring the master node
 <bindings>
 <binding>/HSearchJMSConnectionFactory</binding>
 <binding>/ConnectionFactory</binding>
 <binding>/XAConnectionFactory</binding>
 <binding>java:/ConnectionFactory</binding>
 <binding>java:/XAConnectionFactory</binding>
 </bindings>
 </attribute>
</mbean>

Once again, it’s usually better to use the default values because it makes your configu-
ration more readable to your users.

 The final step configures directory providers to share index changes with the
slaves.

10.3.3 Preparing the directory providers

We have the right piece of software in place, but we do not yet propagate index direc-
tories to the slaves. Contrary to the behavior of slave nodes, the master will physically
interact with Lucene indexes. You don’t need to change the default backend configu-
ration. However, the DirectoryProviders must copy indexes to a shared location on a
regular basis. Listing 10.5 shows a configuration example.

<persistence-unit name="dvdstore-catalog">
 <jta-data-source>java:/DefaultDS</jta-data-source>
 <properties>
 <!-- regular Hibernate Core configuration -->
 <property name="hibernate.dialect"
 value="org.hibernate.dialect.H2Dialect"/>
 <property name="hibernate.hbm2ddl.auto"
 value="create-drop"/>

 <!-- Hibernate Search configuration -->
 <!-- no change in backend configuration -->

 <!-- DirectoryProvider configuration -->
 <property name="hibernate.search.default.directory_provider"
 value="org.hibernate.search.
 ➥store.FSMasterDirectoryProvider"/>
 <property name="hibernate.search.default.refresh"
 value="1800"/>
 <property name="hibernate.search.default.indexBase"
 value="/Users/prod/lucenedirs"/>
 <property name="hibernate.search.default.sourceBase"
 value="/mnt/share"/>
 </properties>
</persistence-unit>

The sourceBase for the master must be the same as the sourceBase for the slaves. It is
the shared location where indexes are passed along. The shared location will contain
two versions of each index at a given time: the active version slaves copy their value

Listing 10.5 DirectoryProviders must copy indexes to shared location

Add a new
binding

Master
directory provider

Copy from the
master every
30 minutes

Directory where master
indexes are shared

Local directory where
indexes are written

326 CHAPTER 10 Scalability: using Hibernate Search in a cluster
from and the passive version the master copies the value to. When the master is fin-
ished with its copy, it switches the active and passive versions. For more information
on the directory provider configuration in a cluster, you read section 5.1.4. Also take
time to run the code examples provided.

10.4 Summary
This chapter discussed clustering approaches and gave you the keys for understanding
their pros and cons. It described in detail the standard method for clustering Hiber-
nate Search asynchronously. Don’t forget that this is only the recommended
approach, and you can always use variations of this technique or even a totally differ-
ent approach. The key is to make sure you limit the number of nodes waiting on the
global pessimistic lock held at the index level.

 The standard approach has a few important features:

■ It keeps slaves working even when the master node goes down.
■ It keeps searches fast. Indexes are copied locally, and queries trigger only

 local I/O.
■ It prevents OutOfMemoryException errors even during heavy index-

writing loads.
■ It keeps the master noncritical to the application’s main operations and easily

switchable to another machine.

We’ve now shown you pretty much all that you need to know about Hibernate Search.
The next part of the book will explore Lucene in a deeper way. While not directly
influencing how you work daily with Hibernate Search, this knowledge is quite useful
because Hibernate Search relies on Apache Lucene for the full-text search engine.
You will soon gain a better understanding of how query results are produced.

Accessing Lucene
natively
If you have not realized it by now, or you just started reading this chapter first,
Lucene is the driving force behind the Hibernate Search framework. The entire
book up to this point has been dedicated to helping you understand how to imple-
ment Hibernate Search in your application. Eventually, everyone has questions
related to working with Lucene directly. We hear questions similar to the following
all the time:

■ Hibernate Search’s default constructs won’t work for me. Now what do I do?
■ I know Hibernate Search takes care of a lot of things for me, but I need to

get at Lucene itself and work with its native constructs. How can I do that?

This chapter covers
■ Utilizing the SearchFactory
■ Accessing Lucene directories
■ Working with
■ DirectoryProviders

■ Exploiting projections
327

file:///D:\java\Projects\opt\hibernate-search-3.1.0.Beta1\doc\api\org\hibernate\search\store\DirectoryProvider.html#stop%28%29

328 CHAPTER 11 Accessing Lucene natively
■ Can I get an instance of a Lucene Directory object so I can work at a lower
level?

■ Hibernate Search has sharded my entity into three separate directories. Is it
possible to work with them as a single object? Can I improve retrieval perfor-
mance?

Do any of these sound familiar? We’re going to answer these questions in this chapter.
We’ll start by looking at Hibernate Search’s SearchFactory, which is the key entry
point to Lucene. It allows access to Directory objects and IndexReaders. We’ll look at
the effects that sharding has on these classes, and along the way we’ll also see what
goes on when indexing multiple entities.

 One of the things that developers must assess is whether or not the default Direc-
toryProviders included with Hibernate Search are sufficient for their purposes. In
the event they are not, you can write a custom one. We’ll discuss what you must take
into account in this situation.

 We’ll also show you how to access the legacy Lucene document and several related
values by utilizing a projection, and we’ll demonstrate how it can affect performance.

 We believe you’ll be pleasantly surprised, because accessing native Lucene is much
easier than you think.

11.1 Getting to the bottom of Hibernate Search
Getting under the covers to interact directly with native Lucene constructs is not diffi-
cult. The most important class here is Hibernate Search’s org.hibernate.search
.SearchFactory class. It’s the gateway to native Lucene.

 The SearchFactory keeps track of the underlying Lucene resources for Hibernate
Search. The contract for SearchFactoryImpl is maintained by the SearchFactory
and SearchFactoryImplementor interfaces.

 You can access the SearchFactory from an org.hibernate.search.FullText-
Session instance, which is obtained from a Hibernate session, as shown in the follow-
ing code:

 FullTextSession fullTextSession =
 ➥Search.createFullTextSession(SessionFactory.openSession());

 SearchFactory searchFactory = fullTextSession.getSearchFactory();

Once you have an instance of the SearchFactory, you have all you need to work
directly with Lucene. From here you can obtain references to Lucene’s Directory
object and also Lucene’s IndexReader. We’ll look at these in the following sections.

11.1.1 Accessing a Lucene directory

Lucene has a notion of a Directory, which it uses to store its indexed information. A
Directory is a list of flat files that may be written to once, when they are created.
Once created, a file can be opened only for reading or deleting. Random access to the
files is permitted at all times.

329Getting to the bottom of Hibernate Search
 All file I/O goes through Lucene’s API, so that it’s nicely encapsulated, but you still
retain all needed flexibility. This allows Lucene’s indexes to be manipulated and
stored several ways, such as these:

■ A set of flat files on some type of persistent storage
■ A RAM-based directory
■ implementation
■ A database index implementation, via JDBC

NOTE The authors do not recommend implementing the JDBC configuration.
We’ll discuss why in section 11.3.

You can always access the native Lucene directories through plain Lucene. The
Directory structure is in no way different with or without Hibernate Search. However,
there are more convenient ways to access a given Directory.

 The SearchFactory we discussed previously keeps track of all of the org.hiber-
nate.search.store.DirectoryProviders that an indexed class may utilize. You
obtain access to directories via the DirectoryProvider. Notice the use of the plural of
DirectoryProvider here. A given entity can have several DirectoryProviders, one
per shard, if the index is sharded (see the discussion on index sharding in
section 9.4). In the opposite vein, one DirectoryProvider can be shared among sev-
eral indexed classes if the classes share the same underlying index directory.
Section 11.1.5 provides an example of this index merging. The DirectoryProvider
class’s main aims are to:

■ Set up a Lucene directory for an index
■ Serve as an abstraction separating Hibernate Search from the Lucene directory

implementation
This implementation could be in any form, even that of a server cluster and

not just of a single file system directory.

Assuming we have an index built from Order information, here is a code example
showing how to obtain an instance of a Lucene org.apache.lucene.store.Directory.

 DirectoryProvider[] providers =
searchFactory.getDirectoryProviders(Order.class);

 org.apache.lucene.store.Directory directory =
providers[0].getDirectory();

In this example code, directory points to the Lucene index storing Order
information.

WARNING When utilizing the Hibernate Search framework to obtain an instance
of a Lucene Directory, do not call close() on the obtained Direc-
tory. This is the responsibility of Hibernate Search. The one opening
the resource has to ensure it gets closed; in this case you borrow a
Hibernate Search managed instance.

330 CHAPTER 11 Accessing Lucene natively
Let’s look at some examples so you’ll better understand what to expect from the
default DirectoryProviders that come bundled with Hibernate Search. We will
accomplish this by the following steps:

1 Creating an index of a single entity and retrieving its DirectoryProvider(s) to
see what we get

2 Creating a sharded index of a single entity and again retrieving the
3 DirectoryProvider(s) to compare with our first result
4 Creating a single index of two entities and examining how the
5 DirectoryProvider(s) have changed in this instance

11.1.2 Obtaining DirectoryProviders from a non-sharded entity

Listing 11.1 shows the simple Animal entity we’ll use for the first example. This is
nothing more than a simple JavaBean-style class and will work well for our example.

@Entity
@Indexed
@Analyzer(impl = StandardAnalyzer.class)
public class Animal {
 @Id
 @DocumentId
 private Integer id;

 @Field(index = Index.TOKENIZED, store = Store.YES)
 private String name;

 public Integer getId() {
 return id;
 }

 public void setId(Integer id) {
 this.id = id;
 }

 public String getName() {
 return name;
 }

 public void setName(String name) {
 this.name = name;
 }
}

NOTE All of the examples in this chapter are based on the example tests
included with the Hibernate Search source code. These tests are located
in and around the org.hibernate.search.test.shards package.

We do not show all of the code in the examples that’s necessary to
make these examples work, although the complete code is included with
the book’s accompanying source files. For example, we provide scaffold-
ing code that must be in place for the setup and so on. To examine this

Listing 11.1 The simple Animal entity used in the examples

331Getting to the bottom of Hibernate Search
code refer to the tests included with the Hibernate Search sources, spe-
cifically the code located in the
org.hibernate.search.test.shards.ShardsTest class.

Listing 11.2 is the single non-sharded entity example. We create instances of our entity
and build the index. Then we search for all records so we can clean up after ourselves
by deleting everything we added. Finally, we retrieve the DirectoryProviders.

public class NonShardsTest extends SearchTestCase {
 Transaction tx;

 public void testNoShards() throws Exception {
 FullTextSession session = Search.getFullTextSession(openSession());
 buildIndex();

 tx = session.beginTransaction();
 QueryParser parser =
 new QueryParser("id", new StopAnalyzer());

 List results =
 session.createFullTextQuery(parser.
 ➥parse("name:bear OR name:elephant")).list();

 assertEquals("Either insert or query failed", 2,
 ➥results.size());

 SearchFactory searchFactory =
 session.getSearchFactory();
 DirectoryProvider[] providers =
 searchFactory.getDirectoryProviders(Animal
 ➥.class);

 assertEquals("Wrong provider count", 1,
 ➥providers.length);

 org.apache.lucene.store.Directory directory =
 providers[0].getDirectory();

 try {
 IndexReader reader =
 IndexReader.open(directory);
 assert reader.document(0).get("name").equals("Elephant")
 : "Incorrect document name";
 assert reader.document(1).get("name").equals("Bear")
 : "Incorrect document name";
 for (Object o : results) session.delete(o);
 tx.commit();
 }
 finally {
 if (reader != null)
 reader.close();
 session.close();
 }

 private void buildIndex(FullTextSession session) {
 tx = session.beginTransaction();

Listing 11.2 Indexing an entry to a non-sharded index

Extend for
scaffolding code

Make sure
everything
worked properly

Get the
DirectoryProvider
for Animal

B

Check DirectoryProvider;
should have only oneC

Retrieve the Lucene
Directory objectD

Use a Directory to
get the documents

Explicitly close the
created reader

E

332 CHAPTER 11 Accessing Lucene natively
 Animal a = new Animal();
 a.setId(1);
 a.setName("Elephant");
 session.persist(a);
 a = new Animal();

 a.setId(2);
 a.setName("Bear");
 session.persist(a);
 tx.commit();
 session.clear();
 }

 @Override
 protected void setUp() throws Exception {
 File sub = locateBaseDir();
 File[] files = sub.listFiles();
 if (files != null) {
 for (File file : files) {
 if (file.isDirectory()) {
 delete(file);
 }
 }
 }
 buildSessionFactory(getMappings(),
 getAnnotatedPackages(),
 getXmlFiles());
 }

B shows that once we have an instance of SearchFactory, it is only one step to a
DirectoryProvider. Because there’s only one entity and no sharding, C confirms
that there’s only one DirectoryProvider. Once we have an instance of a provider, we
can easily obtain access to the Lucene Directory object D. Finally, E demonstrates
that we must close the readers we generated because these were created outside the
Hibernate Search framework and it knows nothing about them. In section 11.2 we’ll
show you a situation where you must not call close on a reader.

11.1.3 And now for sharding one entity into two shards

In listing 11.3 we’ll reuse the same code and make some simple changes. We’ll add
sharding to the MergedAnimal entity and divide one index into two different directo-
ries. The test code will confirm these changes. We’re using the MergedAnimal entity
here because it specifies the index name in the @Indexed(index = "Animal") annota-
tion. The partial MergedAnimal entity showing the index name is given here:

@Entity
@Indexed(index = "Animal")
@Analyzer(impl = StandardAnalyzer.class)
public class MergedAnimal {
 @Id
 @DocumentId
 private Integer id;
 @Field(index = Index.TOKENIZED, store= Store.YES)
 private String name;

333Getting to the bottom of Hibernate Search
public class TestShards extends SearchTestCase {
 Transaction tx;

 @Test
 public void testShards() throws Exception {
 FullTextSession session = Search.getFullTextSession(openSession());
 buildIndex();

 ReaderProvider readerProvider = null;

 IndexReader reader0 = null;
 IndexReader reader1 = null;
 List results;

 try {
 tx = session.beginTransaction();
 FullTextSession fullTextSession =
 Search.getFullTextSession(session);
 QueryParser parser = new QueryParser("id",
 new StandardAnalyzer());

 results = fullTextSession.createFullTextQuery(
 ➥parser.parse("name:bear OR name:elephant")).list();
 assert results.size() == 2:"Either insert or query failed";

 SearchFactory searchFactory =
 fullTextSession.getSearchFactory();
 DirectoryProvider[] providers =
 searchFactory.getDirectoryProviders(MergedAnimal.class);
 assert providers.length == 2
 : "Wrong provider count";

 readerProvider =
 searchFactory.getReaderProvider();

 reader0 = readerProvider.openReader(providers[0]);
 reader1 = readerProvider.openReader(providers[1]);

 assert reader0.document(0).get("name").equals
 ➥("Bear"): "Incorrect document name";
 assert reader1.document(0).get("name").equals
 ➥("Elephant"): "Incorrect document name";
 }
 finally {
 for (Object o : results) session.delete(o);
 tx.commit();
 }

 finally {
 if (reader0 != null)
 readerProvider.closeReader(reader0);
 if (reader0 != null)
 readerProvider.closeReader(reader1);
 session.close();
 }
 }

Listing 11.3 Indexing a single entity to a sharded index

Check DirectoryProviders;
better be two

Instantiate
individual readers

B

Check for splitting
into shardsC

Explicitly close
the readersD

334 CHAPTER 11 Accessing Lucene natively
 private void buildIndex() {
 tx = session.beginTransaction();

 MergedAnimal a = new MergedAnimal();
 a.setId(1);
 a.setName("Elephant");
 session.save(a);

 a = new MergedAnimal();
 a.setId(2);
 a.setName("Bear");
 session.save(a);
 tx.commit();
 session.clear();
 }

 @BeforeClass
 protected void setUp() throws Exception {
 File sub = locateBaseDir();
 File[] files = sub.listFiles();
 if (files != null) {
 for (File file : files) {
 if (file.isDirectory()) {
 delete(file);
 }
 }
 }
 buildSessionFactory(getMappings(),
 getAnnotatedPackages(),
 getXmlFiles());
 }

 @Override
 protected void configure(Configuration cfg) {
 super.configure(cfg);
 cfg.setProperty("hibernate.search.default
 ➥.directory_provider", FSDirectoryProvider.class.getName());
 File sub = locateBaseDir();
 cfg.setProperty("hibernate.search.default.indexBase",
 ➥sub.getAbsolutePath());
 cfg.setProperty("hibernate.search.Animal.
 ➥sharding_strategy.nbr_of_shards", "2");

 cfg.setProperty("hibernate.search.Animal.0.indexName",
 "Animal00");
 }
}

We retrieve index readers for both of the indexes B. C shows that our two entities
were split into separate shards. We close the readers D, returning them to the Read-
erProvider; in this case we have to avoid IndexReader.close(); we didn’t open it
directly but got it from the ReaderProvider, so this is necessary to manage its lifecycle.

 To configure multiple shards we define the nbr_of_shards configuration quantity
E and decide to override the default shard name of the first shard F.

Define two shards
for entities

E

Override the
default shard nameF

335Getting to the bottom of Hibernate Search
11.1.4 Indexing two non-sharded entities

In the final example, we’ll index two different entities and not shard either of them.
We’ll use the Animal entity that we used in the previous two examples and add the
Furniture entity that follows as the second entity. As with the Animal entity, this is
nothing more than a simple JavaBean-style class.

@Entity
@Indexed
public class Furniture {
 @Id
 @GeneratedValue
 @DocumentId
 private Integer id;
 @Field(index= Index.TOKENIZED, store= Store.YES)
 private String color;

 public Integer getId() {
 return id;
 }

 public void setId(Integer id) {
 this.id = id;
 }

 public String getColor() {
 return color;
 }

 public void setColor(String color) {
 this.color = color;
 }
}

Listing 11.4 contains the code for this last example. The protected void config-
ure(Configuration cfg) method in this example is identical to that shown in
listing 11.2.

public class TwoEntitiesTest extends SearchTestCase {
 FullTextSession session;
 Transaction tx;

 public void testTwoEntitiesNoShards() throws Exception {
 session = Search.getFullTextSession(openSession());
 buildIndex();

 tx = session.beginTransaction();
 FullTextSession fullTextSession =
 Search.getFullTextSession(session);
 QueryParser parser =
 new QueryParser("id", new StopAnalyzer());

 List results =
 fullTextSession.createFullTextQuery(parser.parse
 ➥("name:elephant OR color:blue")).list();

Listing 11.4 Indexing two entities to non-sharded indexes

336 CHAPTER 11 Accessing Lucene natively
 assert results.size() == 2: "
 Either insert or query failed";

 SearchFactory searchFactory =
 fullTextSession.getSearchFactory();
 DirectoryProvider[] provider0 =
 searchFactory.getDirectoryProviders(
 ➥Animal.class);
 assert provider1.length == 1: "Wrong provider count";
 org.apache.lucene.store.Directory directory0 =
 provider0[0].getDirectory();

 DirectoryProvider[] provider1 = searchFactory.
 ➥getDirectoryProviders(Furniture.class);
 assert provider1.length == 1: "Wrong provider count";
 org.apache.lucene.store.Directory directory1 =
 provider1[0].getDirectory();

 IndexReader reader0 = IndexReader.open(directory0);
 assert reader0.document(0).get("name")
 .equals("Elephant"):"Incorrect document name";
 IndexReader reader1 = IndexReader.open(directory1);
 assert reader1.document(0).get("color")
 .equals("dark blue"): "Incorrect color";
 for (Object o : results) session.delete(o);
 tx.commit();
 }
 Finally {
 session.close();
 }

 private void buildIndex() {
 tx = session.beginTransaction();

 Animal a = new Animal();
 a.setId(1);
 a.setName("Elephant");
 session.save(a);

 Furniture fur = new Furniture();
 fur.setColor("dark blue");
 session.save(fur);
 tx.commit();

 session.clear();
 }
…

After persisting one instance each of Animal and Furniture, we query for both of the
instances B. We subsequently check for the correct number of results, getting the
DirectoryProviders C for each entry, and from them we retrieve instances of the
Directory objects D. Then we create IndexReaders and open them on the directo-
ries E and ensure that the entities were placed in the correct directories by examin-
ing their Lucene documents F.

 We can draw several conclusions from the previous three examples. It seems that
each entity is assigned its own directory and therefore its own DirectoryProvider. If

Ensure we have a
result from each entity

B

Retrieve the
DirectoryProvider

C

Retrieve a
directory instance

D

Check for the
correct Animal entity

E

Check for the correct
Furniture entity

F

Persist the
second entity

337Getting to the bottom of Hibernate Search
the entity is sharded, each of the shards also receives its own DirectoryProvider.
That makes sense, and our examples prove it. So we’re finished, right? As my old
coach would say, “Not so fast, my friend!” Although this is the default behavior, Hiber-
nate Search gives you the flexibility to combine entities into the same directory. We’ll
look at that next.

11.1.5 Shoehorning multiple entities into one index (merging)

Merge two entities into the same index? Why would we want to do this? Because we
want to reuse the same Directory. Another example is to reuse an index that previ-
ously contained combined entities by completely deleting one of the entities it con-
tains and replacing it with another.

NOTE The authors are presenting this technique so that you know the option is
available. We do not feel that there’s enough benefit in merging an
index. The example we’re presenting here will show that you have to do
more work to accomplish the same thing you did in the previous exam-
ples.

There are actually two ways to accomplish merging an index:

■ Configuring the property hibernate.search.(fully qualified entity

name).indexName=(relative directory from indexBase).
■ Setting the @Indexed annotation’s index property of the entity you want to

merge to the directory you want the entity indexed into.

Look back at the partial MergedAnimal entity in 11.1.3. The @Indexed annotation
shows the index property pointing to Animal. Now look at the Furniture entity shown
just before listing 11.4. As is, it points to the Furniture directory, because that’s the
default value. If we wanted all Furniture instances to be indexed in the Animal index
along with all instances of Animal, we would specify @Indexed(index="Animal").

 This does present a problem. Let’s assume that the id value for the Furniture
entities is actually a part number. What happens when we index both a piece of furni-
ture and an animal with the same id value? We no longer get a single result back, and
we must take into consideration the entity type we’re searching for.

 Let’s look at an example where the additional concern of how to take entity type
into consideration will become clear. We’ll use an entity filter to make sure we work
only the entity we need. We’ll also use the MergedAnimal entity shown in
section 11.1.3 as is, and we’ll use the Furniture entity shown just before listing 11.4.
The configuration will handle putting it in the same index as Animal. Listing 11.5
shows these two methods of merging entities into the same index.

public class IndexMergeTest extends SearchTestCase {
 Transaction tx;

 public void testTwoEntitiesNoShards() throws Exception {

Listing 11.5 Combining two entities into one index by setting configuration parameters

338 CHAPTER 11 Accessing Lucene natively
 FullTextSession session = Search.getFullTextSession(openSession());
 buildIndex(session);

 tx = session.beginTransaction();
 FullTextSession fullTextSession =
 Search.getFullTextSession(session);
 QueryParser parser =
 new QueryParser("id", new StandardAnalyzer());

 List results =
 fullTextSession.createFullTextQuery(parser
 ➥.parse("id:1")).list();
 assert results.size() == 2:"Either insert or
 ➥query failed";

 SearchFactory searchFactory =
 fullTextSession.getSearchFactory();
 DirectoryProvider[] provider =
 searchFactory.getDirectoryProviders(
 ➥MergedAnimal.class);
 assert provider.length == 1
 : "Wrong provider count";
 org.apache.lucene.store.Directory directory =
 provider[0].getDirectory();

 BooleanQuery classFilter = new BooleanQuery();
 classFilter.setBoost(0);

 Term t = new Term(DocumentBuilder.CLASS_FIELDNAME,
 ➥MergedFurniture.class.getName());
 TermQuery termQuery = new TermQuery(t);
 classFilter.add(termQuery, BooleanClause.Occur
 ➥.SHOULD);

 Term luceneTerm = new Term("id", "1");
 Query luceneQuery = new TermQuery(luceneTerm);

 BooleanQuery filteredQuery = new BooleanQuery();
 filteredQuery.add(luceneQuery,
 ➥BooleanClause.Occur.MUST);
 filteredQuery.add(classFilter,
 ➥BooleanClause.Occur.MUST);

 IndexSearcher searcher = null;
 try {
 searcher = new IndexSearcher(directory);
 Hits hits = searcher.search(filteredQuery);
 assert hits.length() == 1: "Wrong hit count";

 Document doc = hits.doc(0);
 assert doc.get("color").equals("dark blue");

 for (Object o : results) session.delete(o);
 tx.commit();
 }
 finally {
 if (searcher != null)
 searcher.close();
 session.close();

Returns two results
from unfiltered queryB

Check only one
provider exists

C

Remove
CLASS_FIELDNAME
scoring impact

D

Build the filter
query boolean
clause

E

Assemble the
full query

F

Returns only one
result from
Filtered query

G

Check for
correct color
valueH

339Getting to the bottom of Hibernate Search
 }
 }

 private void buildIndex(FullTextSession session) {
 Transaction tx = session.beginTransaction();

 MergedAnimal a = new MergedAnimal();
 a.setId(1);
 a.setName("Elephant");
 session.save(a);

 MergedFurniture fur = new MergedFurniture();
 fur.setColor("dark blue");
 session.save(fur);

 tx.commit();
 session.clear();
 }

 @Override
 protected void configure(Configuration cfg) {
 super.configure(cfg);

 cfg.setProperty("hibernate.search.default.
 ➥directory_provider",
 ➥FSDirectoryProvider.class.getName());
 File sub = getBaseIndexDir();

 cfg.setProperty("hibernate.search.default.
 ➥indexBase", sub.getAbsolutePath());

 cfg.setProperty("hibernate.search.com.manning
 ➥.hsia.ch11.Furniture.indexName", "Animal");
 }
}

B and C are here solely to demonstrate that there are two results to a single query of
id=1 and there is only one DirectoryProvider for the merged index.

 At D we are canceling the effect that the DocumentBuilder.CLASS_FIELDNAME has
on the scoring of the returned document. Remember that Hibernate Search adds a
field by the name of _hibernate_class to all indexed documents. This field contains
the class name of the indexed entity as its value.

NOTE As you will discover in chapter 12, having multiple documents in an
index containing the same term (in this case the id) changes the score of
a returned document. The scoring factor this affects is known as the
Inverse Document Frequency (idf).

After this, E builds our filter portion of the query by requiring that the Document-
Builder.CLASS_FIELDNAME field should contain an instance of org.hiber-

nate.search.test.shard.Furniture. This filter is combined with the other half of
the query F by specifying that the id should be 1. After the query is issued, G con-
firms that, thanks to our restriction, there is now only one result instead of the two
pointed out at B. H corroborates that the color field does indeed contain the term

Put Furniture
into the
Animal index

I

340 CHAPTER 11 Accessing Lucene natively
blue. I contains the configuration parameters that tell Hibernate Search to put the
Furniture entity into the Animal index.

 We hope you noticed that, as we said earlier, you need to do additional work here
to obtain your answer. A BooleanQuery is now necessary because you are searching on
two fields. The first is the _hibernate_class field, having a value of the entity you’re
searching for. The second is the actual field and value you’re querying for, in this case
id with a value of 1.

 To find out how these two entities merged into a single index, let’s turn to Luke
and examine the two documents in the index. First look at figure 11.1, which shows
document 0 in the index.

 Several things should be apparent from this figure:

■ Hibernate Search has automatically added the <_hibernate_class> field.
■ The <_hibernate_class> value is MergedAnimal.
■ The <color> field is marked as <not available> because Animal does not con-

tain this field.
■ This is not the document we’re looking for.

Now let’s look at figure 11.2, which shows the second document in the index shown in
listing 11.2.

Figure 11.1 Examining document 0 of our example index. Even though this shows fields from both
entities being present, if a particular entity doesn’t contain one of the fields, it isn’t available. Here
<color> isn’t available because Animal doesn’t contain that field.

341Getting to the bottom of Hibernate Search
 Several things should be apparent from this image also:

■ The <_hibernate_class> value is Furniture.
■ The <name> field is marked as <not available> since Animal does not contain

this field.
■ The <color> field is available in this document, and its value is dark blue.
■ This is the document we are looking for because <color> contains the

term blue.

These figures show that in merged indexes the individual entities are stored as is, and
any fields that are not in a particular entity are ignored.

NOTE Future versions of Luke may not show the index contents exactly as
shown here. The actual contents will, however, be as described.

That’s enough of working with DirectoryProviders and directories. It’s time to move
on to our next topic concerning Hibernate Search’s method of obtaining index read-
ers. Do you remember what we talked about at the end of 11.1.2 concerning closing
IndexReaders? We explained that because the IndexReaders that we instantiated in

Figure 11.2 Examining document 1 of our example index. In this document <name> is not available
since Furniture does not contain that field. The <color> field is available though, and it contains the
value we’re looking for, blue.

342 CHAPTER 11 Accessing Lucene natively
the examples were generated outside the Hibernate Search framework, we were
required to explicitly close them. In the next section, we’ll show you how to obtain an
instance of an IndexReader within the confines of Hibernate Search so that the frame-
work will take care of closing the reader for you.

11.2 Obtaining and using a Lucene IndexReader
within the framework
Looking at listing 11.6 you can see that before you obtain an instance of an
IndexReader you must first get a reference to a ReaderProvider instance.

 DirectoryProvider orderProvider =
 searchFactory.getDirectoryProviders(Order.class)
 ➥[0];
 DirectoryProvider clientProvider =
 searchFactory.getDirectoryProviders(Client.class)
 ➥[0];

 ReaderProvider readerProvider =
 searchFactory.getReaderProvider();
 IndexReader reader =
 readerProvider.openReader(orderProvider,
 ➥clientProvider);
 try {
 //do read-only operations on the reader
 }
 finally {
 readerProvider.closeReader(reader);
 }

When ReaderProviders are created, they take into account the ReaderStrategy con-
figuration property hibernate.search.reader.strategy, which can have any full
classname of an implementation (see 9.2.2.1 for details), or use the shared and not-
shared keywords, the default value being shared. This option is present because one
of the most time-consuming operations in Lucene is opening an IndexReader on a
particular index. If your code has many users, and the reader strategy is set to not-
shared, this could result in performance problems depending on how often new
index readers are needed. Using the shared IndexReader will make most queries
much more efficient.

 To solve this problem and maximize performance, Hibernate Search caches all
instances of IndexReader when the ReaderProvider is set to shared. This means that
there are some simple additional “good citizen” rules that you’ll have to follow:

■ Never call indexReader.close() on a reader that was obtained via a Reader-
Provider, but always call readerProvider.closeReader (reader); a finally
block is the best place to do this, as shown in listing 11.6.

Listing 11.6 Obtaining an instance of a Lucene IndexReader

Obtain
DirectoryProviders

Obtain a reader from
a ReaderProvider

Close in a
finally block

343Writing a DirectoryProvider your way
■ This IndexReader must not be used for modification operations (it’s highly
likely that in a future release we won’t allow this to happen). If you want to use a
read/write IndexReader, create an instance of one by calling the static
IndexReader.open(Directory directory) method, like this:

 DirectoryProvider[] provider =
 searchFactory.getDirectoryProviders(Order.class);
 org.apache.lucene.store.Directory directory =
 provider[0].getDirectory();
 IndexReader reader = IndexReader.open(directory);

WARNING Failure to follow these simple rules will result in clients not being able
to access indexes. Worse, clients will fail at unpredictable times, mak-
ing this a very difficult problem to track down. Also, and most impor-
tant, if you create your own read/write IndexReader, you are
responsible for closing it.

Aside from these rules, you can use the IndexReader freely.
 On some occasions you may be required to furnish a custom DirectoryProvider.

In the next section we will examine a couple of use cases from Emmanuel’s customers
who had specific storage requirements. This example shows what you must consider
when writing a custom DirectoryProvider.

11.3 Writing a DirectoryProvider your way
 It’s impossible to cover even a small number of permutations with persistent storage
configurations present in business today. First we’ll discuss the FSSlaveDirectory-
Provider classes’ methods and what you must take into consideration for each of
them. Then we’ll talk about two situations that exemplify what you must take into
account when writing your own DirectoryProvider. We won’t go into detail with
code, but we will discuss the use case requirements.

 The FSSlaveDirectoryProvider is configured with these two directory settings:

■ hibernate.search.default.sourceBase = directory of master copy
■ hibernate.search.default.indexBase = directory of local copy for querying

These settings specify where the master index is located and also where the copies of
the master index are to be placed.

 Now let’s investigate the FSSlaveDirectoryProvider class hierarchy. Examining
figure 11.3 we see that there are four methods of the DirectoryProvider interface
that it must implement:

■ void initialize(String directoryProviderName, Properties properties,
SearchFactoryImplementor searchFactoryImplementor); This method is a
lightweight initialization that determines the location of the master index from
the sourceBase setting and the slave index location(s) from the indexBase set-
ting. It also determines the index name to allow the equals and hashCode to
work as they must.

344 CHAPTER 11 Accessing Lucene natively
■ void start() This method acquires the resources necessary for index copies.
It determines the refresh period and creates the timed task for copying.

■ void stop() This method is executed when the search factory is closed.
■ TDirectory getDirectory(); This method retrieves the appropriate direc-

tory based on the current copy operation being performed.

Figure 11.3 illustrates the class relationships.
 In addition to these four method implementations, the comparator methods

equals(Object obj) and hashCode()must also be implemented. These two methods
are very important because they must guarantee equality between any two or more
providers pointing to the same underlying Lucene store.

 @Override
 public boolean equals(Object obj) {
 if (obj == this) return true;
 if (obj == null || !(obj instanceof FSSlaveDirectoryProvider)) return

false;
 return indexName.equals(((FSSlaveDirectoryProvider) obj).indexName);
 }

 @Override
 public int hashCode() {
 int hash = 11;
 return 37 * hash + indexName.hashCode();
 }

Shown in figure 11.4 are the two inner classes of FSSlaveDirectoryProvider: Copy-
Directory and TriggerTask.

 It’s possible that you may be required to write one or both of these classes to
accomplish whatever is necessary for your implementation. The authors recommend
that you examine the source code to see exactly what’s going on in these classes.

 Now let’s take a look at the two use cases we told you about. In the first situation,
Emmanuel had a client with a data storage problem, and it’s quite possible that you
may have experienced a similar difficulty. This customer had a Lucene index of sev-
eral hundred million records. Planning estimates were that they should provide for
build-out to one billion or so within the next three years.

Figure 11.3 The class hierarchy diagram of FSSlaveDirectoryProvider shows the six
methods of DirectoryProvider that must be implemented when writing a new
implementation.

345Writing a DirectoryProvider your way
Problems arose when the customer revealed that the index was actually warehoused in
a storage area network (SAN) that fed a 10-node server cluster. A typical SAN configu-
ration is shown in figure 11.5. This cluster provided index query access for the user
along with additional functionality. Their concern was that this would become an n-
node problem. As the number of cluster nodes (n) grew, it would have been counter-
productive to copy the index (sourceBase) from the SAN to each of the nodes of the
cluster (indexBase). The SAN was faster, and the copying would generate much more
network traffic than desired. As n increased, so would the traffic and maintenance of
the copies.

Figure 11.4 The two inner classes of FSSlaveDirectoryProvider
showing their relationship

`
Clients

Servers

Fiber Channel Switch

`
`

RAID Arrays

Figure 11.5 A typical SAN configuration. Rather than
copy the Lucene indexes out to multiple servers, the
customer wanted to keep them on the SAN and have
the clients access them there.

346 CHAPTER 11 Accessing Lucene natively
NOTE For the following discussion, if necessary, refer to chapter 10 and specifi-
cally figure 10.2.

The customer wanted to know if it were possible to configure the FSSlaveDirectory-
Provider to not have an indexBase (slave copies of the master index from the index
source located on the server cluster) and configure only a sourceBase (index source
location) to prevent the copying cycle from reaching the outlying servers. This would
make the index source copy of the master index in figure 10.2 the slave index. This is
possible but not out of the box. The customer would have to write its own Directory-
Provider. Emmanuel’s recommendations were:

■ Remove the actual copy to the cluster by modifying the run method of the
inner CopyDirectory class and copy it to one slave index on the SAN.

■ Leave the rest of the code alone: TriggerTask, marker determination, and so
on.

■ Set the refresh period to a small value to keep the slave index (the index
source) up to date. This was now local I/O to the SAN and would be very fast.

Since the slave index was read-only and therefore would not have any Lucene locking
issues, the slave directory could be easily shared. This prevents future scaling issues,
and SANs are fast enough that they should not become bottlenecks. In the event they
should, they also can be easily scaled up. We’re sure that you’ll probably come up with
a different way of doing this—there always is—but that’s up to you.

 The second use case involved a user who wrote a custom DirectoryProvider that
stores an index in a database.

 The authors recommend against doing this for several reasons:

■ Lucene index segments are usually stored as blobs in a database. Those of you who
have stored data this way know that this isn’t an efficient manner of storage,
especially for frequent access.

■ Because of the way Lucene indexes work, a database would still need a global pessimistic
lock for writes. This does not scale well.

■ Indexes that mirror database tables and are used to increase search speed instead of using
slow SQL queries are somewhat “disposable” for the following reason: There is no
strong incentive for them to be transactional because they can be fairly easily
rebuilt. (No one wants their order-entry system to fail, for example, because
they cannot update their order index synchronously with the database.)

Emmanuel discusses these issues with the user on the Hibernate forum at http://
forum.hibernate.org/viewtopic.php?t=980778&highlight=lucene+directory+data-
base. This is an informative discussion, and we recommend that you read it.

 By now you have probably realized that supplying your own version of a
DirectoryProvider is not as simple as in some situations where you provide your own
implementation of a method. You may have to change or write one of the inner classes
or rewrite several methods. It’s not that difficult a task, but it is more than a simple
method change.

http://forum.hibernate.org/viewtopic.php?t=980778&highlight=lucene+directory+data-base.This
http://forum.hibernate.org/viewtopic.php?t=980778&highlight=lucene+directory+data-base.This
http://forum.hibernate.org/viewtopic.php?t=980778&highlight=lucene+directory+data-base.This
http://forum.hibernate.org/viewtopic.php?t=980778&highlight=lucene+directory+data-base.This

347Projecting your will on indexes
 As one last example of how you can access Lucene natively from Hibernate Search,
we’re going to work with projection in the next section. This concept comes from
Hibernate and allows access to several entity-related values.

11.4 Projecting your will on indexes
Hibernate Search (and Hibernate itself for that matter) has a concept called projection.
Utilizing a projection allows access to several underlying Lucene entity values, which
are enumerated in the interface ProjectionConstants:

■ public String THIS Represents the Hibernate entity itself returned in a
search.

■ public String DOCUMENT Represents the Lucene (legacy) document returned
by a search.

■ public String SCORE Represents the legacy document’s score from a search.
■ public String BOOST Represents the boost value of the legacy document.
■ public String ID Represents the entity’s id property.
■ public String DOCUMENT_ID Represents the Lucene document id, which can

change over time between two different IndexReader openings.
■ public String EXPLANATION Represents Lucene’s org.apache.lucene.

search.Explanation object describing the score computation for the object/
document. This feature is relatively expensive, and we recommend that you not
use it unless you return a limited number of objects (using pagination). To
retrieve an explanation of a single result, we recommend retrieving the expla-
nation by using fullTextQuery.explain(int). If you need to, refer to
chapter 12 for a review of the explain method.

In addition to the items listed in ProjectionConstants, any of the fields contained in
the indexed entity can be requested by the projection. The following code shows the
Employee entity that we will use in the example:

 @Entity
 @Indexed
 public class Employee {
 private Integer id;
 private String lastname;
 private String dept;

 public Employee() {
 }

 public Employee(Integer id, String lastname, String dept) {
 this.id = id;
 this.lastname = lastname;
 this.dept = dept;
 }

 @Id
 @DocumentId
 public Integer getId() {

348 CHAPTER 11 Accessing Lucene natively
 return id;
 }

 public void setId(Integer id) {
 this.id = id;
 }

 @Field(index = Index.NO, store = Store.YES)
 public String getLastname() {
 return lastname;
 }

 public void setLastname(String lastname) {
 this.lastname = lastname;
 }

 @Field(index = Index.TOKENIZED, store = Store.YES)
 public String getDept() {
 return dept;
 }

 public void setDept(String dept) {
 this.dept = dept;
 }
 }

Listing 11.7 demonstrates the use of a Hibernate Search projection. As explained in
the note at the beginning of this chapter, the scaffolding code principle still holds for
this example. In this case, we examine the tests in the org.hibernate.search.
test.query package.

public class ProjectionQueryTest extends SearchTestCase {
 FullTextSession session;
 Transaction tx;

 public void testLuceneObjectsProjectionWithScroll() throws Exception {
 session = Search.getFullTextSession(openSession());
 buildIndex();

 tx = session.beginTransaction();
 QueryParser parser =
 new QueryParser("dept", new StandardAnalyzer());

 Query query = parser.parse("dept:ITech");
 org.hibernate.search.FullTextQuery hibQuery =
 session.createFullTextQuery(query, Employee.class);
 hibQuery.setProjection("id", "lastname", "dept",
 FullTextQuery.THIS, FullTextQuery.SCORE,
 FullTextQuery.DOCUMENT, FullTextQuery.ID);

 ScrollableResults projections = hibQuery.scroll();
 projections.beforeFirst();
 projections.next();
 Object[] projection = projections.get();

Listing 11.7 Utilizing a Hibernate Search projection to retrieve values

Applying a
projection to the
query

B

349Projecting your will on indexes
 assert (Integer)projection[0] == 1000
 : "id incorrect";
 assert ((String) projection[1]).equals("Griffin")
 : "lastname incorrect";
 assert ((String)projection[2]).equals("ITech")
 : "dept incorrect";

 assert session.get(Employee.class,
 (Serializable) projection[0])
 .equals(projection[3]): "THIS incorrect";

 assertEquals("SCORE incorrect", 1.0F, projection[4]);
 assert (Float)projection[4] == 1.0F
 : "SCORE incorrect";
 assert projection[5] instanceof Document
 : "DOCUMENT incorrect";
 assert ((Document) projection[5]).getFields()
 .size() == 4: "DOCUMENT size incorrect";
 assert (Integer)projection[6] == 1000
 : "legacy ID incorrect";
 assert projections.isFirst();

 assert ((Employee) projection[3])
 .getId() == 1000: "Incorrect entity returned";

 for (Object element : session.createQuery("from "
 + Employee.class.getName()).list())
 session.delete(element);
 tx.commit();
 }
 finally {
 session.close();
 }

 private void buildIndex() {
 Transaction tx = session.beginTransaction();
 Employee e1 =
 new Employee(1000, "Griffin", "ITech");
 session.save(e1);

 Employee e2 =
 new Employee(1001, "Jackson", "Accounting");
 session.save(e2);
 tx.commit();

 session.clear();
 }
}

B applies a projection to our "dept:ITech" query. The results of the test query are
then checked: C checks the id, lastname, and dept fields from the Employee entity, D
checks the validity of the requested ProjectionConstants values, and E retrieves the
FullTextQuery.THIS entity of ProjectionConstants and validates that the lastname
field corresponds to the correct value.

Assertions on
entity fields

C

DAssertions on
ProjectionConstants

values

Checking a value of
the returned entity

E

350 CHAPTER 11 Accessing Lucene natively
 Projections are one of the performance improvements that we recommend. You
should not make a round-trip to the database to retrieve data if you can retrieve it
from the index. Lucene is incredibly fast at locating data, and that’s where a projec-
tion comes in. It allows you to specify exactly the data you want to examine and skip
loading any of the data from the database you’re not interested in. This can increase
performance, but as usual, you need to test to be sure.

 Native Lucene emulates this process through a combination of the org.apache.
lucene.document.MapFieldSelector and the org.apache.lucene.document.Field-
SelectorResult classes, to prevent loading data that you’re not interested in.

11.5 Summary
You’ve seen that accessing Lucene natively is a straightforward task as long as you have
an instance of the SearchFactory object to start things off. Once you have an instance
of this class, you can get references to Lucene Directorys and DirectoryProvider(s).

 These classes make creating IndexReaders and ReaderProviders a straightforward
operation, although section 11.2 lists some rules you will have to live by to utilize them
safely. Sometimes, but not often, it’s necessary to write your own DirectoryProvider.
We examined that process and found that it may be necessary to provide overriding
implementations of the following:

■ void initialize(String directoryProviderName, Properties
properties, SearchFactoryImplementor searchFactoryImplementor);

■ void start();
■ void stop();
■ TDirectory getDirectory();

The equals and hashCode methods must also be overridden, but these are certainly
not insurmountable tasks.

 Remember, implementing projections can increase result-retrieval performance.
We recommend you test for performance gains and use them as you see fit.

 Next we’re going to talk about a subject that’s a little more difficult to grasp but
not overly so: document scoring and changing how it is calculated so that it fits our
needs. This is a lengthy topic, but we’re sure that when you finish it you’ll understand
a lot more about Lucene and information retrieval in general.

Part 5

Native Lucene,
scoring, and the wheel

In this final section of the book we will examine a veritable hodgepodge of
topics.

 Chapter 11 considers how to get to the native Lucene constructs that exist
underneath of and are used by Hibernate Search. Chapter 12 discusses at length
how documents are scored, utilizing the vector space model of information
retrieval. A short discussion of document relevance is also included. Chapter 13
demonstrates some of the classes provided for you that were contributions from
various sources and finishes with a lengthy discussion of how to index different
document formats, such as Microsoft Word documents and XML files.

 Following chapter 13 is an appendix, a quick reference guide of Hibernate
Search artifacts. Here you can find annotations, APIs and Lucene query APIs,
and where in the book the discussion is found.

Document ranking
Have you ever found yourself saying something like, “I need to score the results of
my queries slightly differently. How do I go about that?” Or maybe, “I don’t care
about how many times what I’m looking for occurs in a result; I just want to know
whether or not it does.” The authors have even heard, “The lengths of the docu-
ments I’m querying should have nothing to do with the scores of the results.”

 How documents are scored when they are retrieved during a search is a very hot
topic among users. Questions appear every day on the Lucene mailing list at java-
user@lucene.apache.org echoing these same concerns. If you wish to subscribe to
this list, you can do so at http://lucene.apache.org/java/docs/mailinglists.html.

 We’re going to answer many of those questions here, and in doing so we’ll cover
one of the most difficult topics in the information-retrieval realm. We’ll start by uti-
lizing the classic vector space model to score documents against a query. We’ll then

This chapter covers
■ The vector space model
■ Extending the DefaultSimilarity class
■ Writing your own Scoring and Weight classes
■ Relevancy
353

http://lucene.apache.org/java/docs/mailinglists.html#Java User List

354 CHAPTER 12 Document ranking
cover Lucene’s scoring methodology and run through examples of how to change
document scores. We’ll build our own classes and extend others to score things the
way we want them. Finally, we’ll talk about document relevance and how to improve it.
There’s a lot to cover here, so let’s get started.

12.1 Scoring documents
Lucene offers a plethora of ways to adjust the scoring of documents returned from
queries. You can adjust the way a document’s individual fields are scored when que-
ried against by boosting the scoring value of those fields. The scoring for an entire
document can be changed by boosting at the document level. The sole purpose of the
classes Similarity, Weight, and Scorer is to allow you to change various calculations
that determine how documents are scored. Even the explanation of exactly how a doc-
ument’s score was achieved is available. We’ll start with that exercise by using a com-
plete example of calculating document scores. Section 12.2 will cover Lucene’s
modifications to the classic model and show you how to modify it to adjust scores.

NOTE Even though this is an “in Action” book, the authors deem that a discus-
sion of scoring methodology is a needed addition. Scattered references
and citations concerning information-retrieval scoring theory abound on
the internet, but we’d like to put the facts in one place. This will make
things much easier to understand for anyone wanting to adjust how doc-
uments are scored. It will also help those who want to comprehend what
is involved in the scoring process. If you consider yourself to be mathe-
matically challenged, please do not let the formulas intimidate you. At
the same time, this discussion is not an absolute necessity for understand-
ing the process. If you wish, you can skip the theory portion and work
directly with the related classes. Hopefully, you’ll revisit the theory later
to see why it worked that way!

We’ll start by introducing the classic vector space model. This has become the basic
building block of several scoring techniques, including Lucene’s. Along the way, we’ll
talk about the shortcomings of this approach. Then, after working through a complete
example, we’ll move on to how Lucene deals with these shortcomings, how it imple-
ments its variations of this model, and how you can manipulate the scoring process.

12.1.1 Introducing the vector space model

First and foremost, let’s define exactly what a score is.

A document’s score is a ranking of the relevancy of the retrieved document relative to other
retrieved documents in response to a query against a repository of documents.

An important thing to remember about this score is that it is completely unrelated to
any score returned by a different query on the same repository. It is relevant only to
scores of other returned documents for the same query.

http://lucene.apache.org/java/2_3_2/api/org/apache/lucene/search/Weight.html#scorer%28org.apache.lucene.index.IndexReader%29
http://lucene.apache.org/java/2_3_2/api/org/apache/lucene/search/Weight.html#scorer%28org.apache.lucene.index.IndexReader%29
http://lucene.apache.org/java/2_3_2/api/org/apache/lucene/search/Weight.html#scorer%28org.apache.lucene.index.IndexReader%29
http://lucene.apache.org/java/2_3_2/api/org/apache/lucene/index/IndexReader.html
http://lucene.apache.org/java/2_3_2/api/org/apache/lucene/index/IndexReader.html

355Scoring documents
 Several methodologies are in use today for ranking the information returned from
data repositories. Hibernate Search’s engine, Lucene, is based on the vector space
model first proposed by Salton et al in 1975 with their paper “A Vector Space Model
for Automatic Indexing.” Lucene also uses Boolean retrieval methods to narrow the
number of documents that need to be scored, but by far the vector space model is the
scoring methodology it uses.

 In the paper, Salton states that documents and queries can be expressed as vectors
and as such should be comparable in such a way that a similarity coefficient that mea-
sures the similarity between them can be computed. This coefficient turns out to be a
measure of the angle between the vector representing the document and the one rep-
resenting the query. This is the elusive score we’re looking for. See figure 12.1.

The vector space model of Salton refers to a query term’s weight as the result of his
formula, so we will stay with his nomenclature for this discussion. It also considers doc-
uments from two different perspectives: information from individual documents
(local information) and document repositories (global information). The reason for
this distinction will make sense in a minute.

 The classic formula is shown in equation 12.1.

do
cu

men
t v

ec
tor

θ
cosine of this angle is
the similarity coefficient
 (score)

completely relevant
cosine = 1.0 angle = 0.0º

completely irrelevant
cosine = 0.0 angle = 90.0º

query vector

Figure 12.1 Documents and
queries can be represented
as vectors. A similarity
coefficient that is the cosine
of the angle between these
vectors could represent the
relative ranking (score) of
the document compared to
others.

term weight

term frequency or the number of times a term appears in a document

�document frequency or the total number of documents in the repository containing term

* log

i

i

i

i i
i

w

i

i

D

tf

df

Dw tf
df

=

=

=

=

⎛ ⎞
= ⎜ ⎟

⎝ ⎠

��number of documents in the repository

Equation 12.1 The classic vector space model formula for calculating
the weight (score) of a document by multiplying the term frequency (tf) by
the log of the inverse document frequency (idf).

356 CHAPTER 12 Document ranking
 Considering the local information that is the first term on the right side of the
equals sign in equation 12.1 and temporarily ignoring the second term, as tf increases,
so does the score. The second term on the right side of the equals sign of
equation 12.1 was introduced to take global information into account by considering
the total number of documents in the repository. This term is known as the inverse doc-
ument frequency (idf). A closer look at this portion of the equation shows that holding
the number of documents in the repository constant and increasing the document
frequency results in a lower weight. For example, equation 12.2 shows that with a
repository of 1000 documents, if 5 documents contain the term queried for, then the
idf is 2.3.

If the number of documents containing the term increased to 20, equation 12.3 shows
the idf would become 1.7. This shows that queried terms found in an excessive number
of documents cause those documents to receive a lower score than those that do not.

How does this equation of tf, idf, and term weight translate into a document score? To
understand that we will look at a complete, albeit somewhat trivial, example of how
document scores are calculated in the vector space model.
CALCULATING THE PRELIMINARY VALUES

This example was originally developed by Professors David Grossman and Ophir
Freider from the Illinois Institute of Technology for use in their book Information
Retrieval: Algorithms and Heuristics from Springer Publishing and is used here with per-
mission of the publisher. Our thanks to Professor Grossman and Springer.

 Assume that we have a document repository of three documents:

■ D1: “shipment of gold damaged in a fire”
■ D2: “delivery of silver arrived in a silver truck”
■ D3: “shipment of gold arrived in a truck”

The query against this repository is "gold silver truck", and the resulting calcula-
tions between the query and documents are shown in table 12.1.

 The last row of table 12.1 is the column numbers, which are referenced in the fol-
lowing discussion.

 In columns (1) to (5) we list the terms in the document repository and determine
the term counts (tf) for each of the documents and also the query.

 In columns (6) to (8) we determine the idf by summing the number of documents
in which the individual term occurs. Then we divide these totals into the total number
of documents in the repository, 3, and take their logarithm. Notice that for the term

⎛ ⎞ =⎜ ⎟⎝ ⎠
1000log 2.3

5
Equation 12.2 With a repository of 1000 documents, if 5 documents contain
the term queried for, then the idf is 2.3.

1000log 1.7
20

⎛ ⎞ =⎜ ⎟⎝ ⎠
Equation 12.3 If the number of documents containing the term increased to 20,
the idf would become 1.7.

357Scoring documents
silver the df (document frequency) is still only 1, because even though it appears twice,
both occurrences are in the same document.

 In columns (9) to (12) we compute term weights with tf * idf.
 The final step is to take these weights and perform a similarity analysis, treating

these weights as vector coordinates.
PUTTING IT ALL TOGETHER

The full similarity equation for a query Q, documents i, and terms j is given in equa-
tion 12.4.

Don’t let this equation worry you; it’s not as complicated as it looks. We can rewrite
this equation as shown in equation 12.5, which shows it as the dot product of the query
and document weights divided by the product of the lengths of the same quantities,
that is, the vector length of the query multiplied by the vector lengths of individual
documents.

Table 12.1 A listing of all document and query terms and their frequency counts that are used to calculate the
inverse document frequency and term weights. The last row in the table provides the column numbers referred to
in the text.

D = 3 (the number of documents in our repository)

Term counts (tf) Weights (w = tf * idf)

Terms Query D1 D2 D3 Df D/df idf Query D1 D2 D3

A 0 1 1 1 3 3/3=1 0 0 0 0 0

Arrived 0 0 1 1 2 3/2=1.5 0.1761 0 0 0.1761 0.1761

Damaged 0 1 0 0 1 3/1=3 0.4771 0 0.4771 0 0

Delivery 0 0 1 0 1 3/1=3 0.4771 0 0 0.4771 0

Fire 0 1 0 0 1 3/1=3 0.4771 0 0.4771 0 0

Gold 1 1 0 1 2 3/2=1.5 0.1761 0.1761 0.1761 0 0.1761

In 0 1 1 1 3 3/3=1 0 0 0 0 0

Of 0 1 1 1 3 3/3=1 0 0 0 0 0

Silver 1 0 2 0 1 3/1=3 0.4771 0.4771 0 0.9542 0

Shipment 0 1 0 1 2 3/2=1.5 0.1761 0 0.1761 0 0.1761

Truck 1 0 1 1 2 3/2=1.5 0.1761 0.1761 0 0.1761 0.1761

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

()=
∑

∑ , ,
2

,

 ,
j

Q j i j
i

Q j

w w
sim Q D

w Equation 12.4 The full similarity equation between a query
and a document

http://lucene.zones.apache.org:8080/hudson/job/Lucene-Nightly/javadoc/org/apache/lucene/search/Similarity.html#encodeNorm%28float%29
http://lucene.zones.apache.org:8080/hudson/job/Lucene-Nightly/javadoc/org/apache/lucene/search/Similarity.html#encodeNorm%28float%29

358 CHAPTER 12 Document ranking

Let’s rewrite this equation one more time into the terms that we have from table 12.1.
Equation 12.6 should show you exactly how this equation correlates to the quantities
we have to this point.

To calculate the similarity we’ll take the numbers we’ve calculated so far and plug
them into this formula for each document. Equations 12.7 through 12.13 show how
different terms are calculated (refer to table 12.1 as necessary). We first calculate the
vector length of the query:

Next, for each of the three documents in the repository we calculate their vector
lengths:

Now that we have the products of the lengths, we calculate the dot products. These
calculations are shown in equations 12.11 to 12.13.

Finally, for documents 1, 2, and 3 we calculate the similarity coefficients for document
1, as shown in equation 12.14, followed by equations 12.15 and 12.16 for documents 2
and 3, respectively.

| | | |
i

D i
i

Q DCosine
Q D

θ
•

=
∗

Equation 12.5 Rewrite of equation 12.4 to the dot product divided by
the product of the lengths of the same quantities

2 2

()termi query
Di

termi query

weight weight
Cosine

weight weight
θ

∗
=

∗
∑
∑

Equation 12.6 Breaking down equation 12.4 to the
weights we have from table 12.1

2 2 2| | 0.1761 0.4771 0.1761 0.2896 0.5382Q = + + = =

Equation 12.7 Substituting the numbers from table 1 for the
query into the formula in equation 12.4

Equations 12.8, 12.9, and 12.10 Substituting the numbers from table
12.1 for documents 1, 2, and 3 to calculate the vector lengths

1

2

3

0.1761 0.1761 0.0310
0.4771 0.9542 0.1761 0.1761 0.4862
0.1761 0.1761 0.1761 0.1761 0.0620

Q D
Q D
Q D

• = ∗ =
• = ∗ + ∗ =
• = ∗ + ∗ =

Equations 12.11, 12.12, and 12.13
Calculating the dot products of the
individual documents

359Scoring documents

Sorting these values in descending order, we have:

1 Document 2 = 0.8246
2 Document 3 = 0.3271
3 Document 1 = 0.0801

Notice in our table of calculations that terms occurring very often in many docu-
ments do nothing to increase the score of a document. For example, of and some
other words in our example actually calculate to zero. Therefore they aren’t included
in further calculations. This is due to the global information component, idf. In our
example these terms appear in every document, which causes their idf value and
therefore their weights to calculate to zero. In large repositories if they had not
appeared in every document, they still would have appeared in the vast majority of
them, and their weights would calculate to very small quantities and therefore have
little effect on query outcomes. Common words like the, and, and but are known as
stop words. Many indexing and querying schemes allow for their removal both from
documents before they are put into a search repository and from queries before they
are applied to a search.

 Is there still a problem here? The three documents now are for all intents and pur-
poses the same length. What would happen if document 1 were inordinately longer
than the other two? Let’s say that document 1 reads, “Shipment of gold damaged in a
fire, gold was undamaged, gold truck was total loss, gold exchange notified.”

 It is a natural assumption that long documents concerning a specific topic would
probably contain higher term frequencies of the term they were concerned with. Wit-
ness the gold term in our new document. How can we take that into account? We’ll dis-
cuss that in the next section.

12.1.2 Normalizing document length to level the playing field

Term frequency counts by themselves are not a good measure of relevancy to a term
query Q because:

■ With different length documents, a longer document may be scored higher
because Q could appear more often.

■ Equal-length documents are scored higher for more occurrences of Q.

()

()

()

1
1

1

2
2

2

3
3

3

0.0310, 0.0801
| |*| | 0.5382 * 0.7192

0.4862, 0.8246
| |*| | 0.5382 *1.0955

0.0620, 0.3271
| |*| | 0.5382 * 0.3522

Q Dsim Q D
Q D

Q Dsim Q D
Q D

Q Dsim Q D
Q D

•= = =

•= = =

•
= = =

Equations 12.14, 12.15, and 12.16
Similarity coefficient calculations between
documents 1, 2, and 3 and the query

360 CHAPTER 12 Document ranking
We will discuss the document-length problem first, then examine the term-count
problem. Long documents tend to contain higher individual term counts, but the idf
remains constant; therefore the term weight w increases proportionally. Suppose we
have a document D1, which has a certain weight w1 for a given term t1. Now suppose
we increase the size of D1 by appending a copy of D1 to itself. What have we accom-
plished? The document count has not changed and neither has the df, but the term
frequency count and therefore the score have doubled.

 How do we solve or at least minimize this problem that document length can pose?
We normalize the tf weights of all terms occurring in a document by the maximum tf
in that document. Formally this is shown in equation 12.17.

Consider a document with the terms and frequencies shown in table 12.2.
 The truck term occurs most often, so the normalized frequencies are determined

as shown in table 12.3.

The weight of term i in document j is given in equation 12.18. This is the formula used
in normalized frequency term vector calculations.

Queries also can be normalized if necessary. The formal equation for queries is shown
in equation 12.19.

,

,

,

,
,

,

 normalized frequency
 frequency of term in document

max maximum frequency of term in document

max

i j

i j

i j

i j
i j

i j

i j
i j

f
tf

tf

tf
f

tf

=

=

=

=

Equation 12.17 Dividing a term’s frequency by
the largest term frequency value yields a
normalized frequency.

Table 12.2 Example terms
and frequencies

Term Frequency

delivery 1

shipment 2

silver 4

truck 5

Table 12.3 Terms with their
frequencies normalized

Term
Normalized
frequency

delivery 1/5 = 0.20

shipment 2/5 = 0.40

silver 4/5 = 0.80

truck 5/5 = 1

,
,

,
* log

max
i j

i j
ii j

tf Dw
tf df

⎛ ⎞= ⎜ ⎟
⎝ ⎠

Equation 12.18 The weight of term i in document j.

361Scoring documents

As an example, suppose you have the following query: Q = shipment silver ship-
ment. The frequencies are

shipment 2
 silver 1

The shipment term occurs most often, so the normalized frequencies are

shipment (0.5 + 0.5 * 2/2) = 1
 silver (0.5 + 0.5 * 1/2) = 0.75

The weight of term i in query Q is given in equation 12.20. This formula was derived
entirely from experimentation and measuring the results as the constants were
changed to produce the best results.

Now that we’ve looked at how to minimize the effect of document length on its score,
let’s see what we can do to minimize the effect that a large term count can have on it.
That is the topic of the next section.

12.1.3 Minimizing large term count effects

In the early days of the internet, people would insert a large number of identical terms
into their HTML page’s metadata. Let’s say that these terms represented, for example,
what their company manufactured. An internet search engine utilizing just term count
information would then artificially inflate their page with a higher score and bring it
closer to the top of search results. This practice is known as keyword spamming.

 Our similarity coefficient calculation example at the beginning of this chapter did
not demonstrate or even attempt to demonstrate this problem. This was because, first,
we did not want to introduce too many things at once. We wanted you to concentrate
on the calculations and understand how they are done. Second, it is impossible to
illustrate this problem with such a small document repository. Let’s face it; our exam-
ple is totally unrealistic as far as repository size and document frequency are con-
cerned. With that in mind we’re going to ramp up our example to a realistic size and
at the same time reduce our query to two terms and calculate the weight of two docu-
ments in the repository, D1 and D2. The increase in repository size will allow for rea-
sonable number generation, and the query size reduction and weighting of only two
documents will simplify the visualization of exactly what these numbers mean. Also, it

,

,

,

,
,

,

 normalized query frequency
 frequency of term in query

max maximum frequency of term in query

0.5 0.5 *
max

Q i

Q i

Q i

Q i
Q i

Q i

i
i

f
tf

tf

tf
f

tf

=

=

=

= +

Equation 12.19 The formula used in normalized
frequency query vector calculations

⎛ ⎞ ⎛ ⎞
= +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

,
,

,
0.5 0.5 * * log

max
Q i

Q i
Q i i

tf Dw
tf df

Equation 12.20 The weight of term i in query Q.
This is the formula used in normalized frequency query
vector calculations.

362 CHAPTER 12 Document ranking
will demonstrate what we meant when we presented figure 12.1 and how we derived
that figure in the first place.

 Here are the new quantities we’re going to work with:

■ repository size of 10,000,000 documents
■ query is “gold truck”
■ gold appears in the repository in 80,000 documents
■ truck appears in the repository in 120,000 documents
■ gold appears in D1 two times and in D2 one time
■ truck appears in D1 three times and in D2 six times

We are simulating keyword spamming by saying that truck appears six times in D2.
This is exactly how spamming is accomplished: have a term show up in a document
many, many times. It is usually even more than six times, but that is good enough for
our example. Table 12.4 is generated exactly as table 12.1 was and shows our base cal-
culations. As we promised, things are a little simpler.

First we calculate the dot product of the documents and the query shown in equations
12.21 and 12.22.

Looking at the dot product alone, you might be tempted to say that D2 has the better
score, but we’re not finished yet. Next we need to calculate the vector lengths of the
documents and query. These calculations are given in equations 12.23 through 12.25.

We now have everything we need to calculate the document weights. The final calcula-
tions are given in equations 12.26 and 12.27.

Table 12.3 Query and document weight calculations exactly as performed in table 12.1

D = 10,000,000, the number of documents in the repository

Term counts (tf) Weights (w = tf * idf)

Terms Q D1 D2 Df D/df Idf Q D1 D2

gold 1 2 1 80,000 125.0 2.097 2.097 4.194 2.097

truck 1 3 6 120,000 83.33 1.921 1.921 5.763 11.526

4.194 2.097 5.763 1.921 19.866
2.097 2.097 11.526 1.921 26.538

D1 Q
D2 Q

• = ∗ + ∗ =
• = ∗ + ∗ =

Equations 12.21 and 12.22 Calculating the dot
product of the documents and the query

2 2

2 2

2 2

| | 4.194 5.763 7.128

| | 2.097 11.526 11.715

| | 2.097 1.921 2.844

D1

D2

Q

= + =

= + =

= + =
Equations 12.23, 12.24, and 12.25 Calculating
the vector length of the documents and query

363Scoring documents

Now you can see the effects of keyword spamming! Increasing the frequency of the
term truck in D2 actually caused the document’s score to decrease. Let’s look at a graph-
ical representation of this in figure 12.2. This should also help you to understand what
we meant by figure 12.1.

As you can see by figure 12.2, increasing the term frequency of truck in D2 increased
that term’s weight and therefore pushed D2’s vector away from the query vector Q. If
you were to measure the angles between the query and the document vectors, you
would find that the cosine of the angle between Q and D1 is 0.9800, and between Q
and D2 it is 0.7965. If you had a problem understanding figure 12.1 when you first saw
it, take a look at it now, and we bet it will make more sense.

 Let’s review what we’ve covered so far. In the classic vector space model of informa-
tion retrieval, documents and queries are considered to convey meaning based on
their respective contents (terms). By counting these terms and performing relatively
simple mathematical manipulation on them, it is possible to represent them as vec-
tors. Once these vectors are developed, they can be utilized to calculate similarity coef-
ficients between documents and a query. This coefficient can be interpreted as a
relative score for returned documents against the query.

 This model is not without its problems. A simple count of the number of occur-
rences of a term is not a good measure of relevancy because of the possibility of key-
word spamming. The equating of queries and documents to vectors and calculating
the angle between them solves this problem. Document length can adversely affect

19.866 0.9800
| | | | 7.128 2.844

26.538 0.7965
| 2| | | 11.715 2.844

D1 Q
D1 Q
D2 Q
D Q

• = =
∗ ∗
• = =
∗ ∗

Equations 12.26 and 12.27 Calculating the weight
of documents D1 and D2 using the previously
calculated quantities

weight of gold
1 2 3 4 5 60

1
2

0

3
4
5
6
7
8
9

10
11
12
13

weight of
truck

Q(2.097, 1.921)

D1(4.194, 5.763)

D2(2.097, 11.526)

Figure 12.2 Plotting the query and document
vectors by their respective weights

364 CHAPTER 12 Document ranking
the model because as length increases, so do the term counts. Term count normaliza-
tion for both documents and queries helps to offset these problems.

 There are other problems with the classic model, but this discussion was not
intended by any means to be an exhaustive canvass but only a gentle introduction.
Let’s move on to Lucene and how it performs its document scoring. We will look at
the DefaultSimilarity, Similarity, Weight, and Scorer classes that are used to
manipulate scoring and how to change their default behavior.

12.2 Exploring Lucene’s scoring approach
and the DefaultSimilarity class
As stated earlier, Lucene uses a combination of the Boolean model and the vector
space model to respond to queries. Lucene’s approach to document scoring is to
score only those documents that have at least one term that matches a query. It does
not implement a pure vector space model whereby all documents are scored whether
matching or not. The Boolean model is first utilized to filter matching documents
(remember all the BooleanQuery occurrences in chapter 7?), and then the vector
space model is used in the scoring calculations of those documents. The Boolean
model utilizes the standard Boolean terms AND, OR, NOT, and so on. This is a good mar-
riage of two very different approaches to retrieval for two reasons:

■ Conventional Boolean retrieval contributes little to relevance ranking. A docu-
ment either matches a query or does not match a query.

■ Having to calculate a score for only those documents that match the Boolean
query greatly reduces the number of calculations that must occur, resulting in
faster response.

The Similarity class is an abstract class that defines the methods necessary for a sub-
class to override whether the user wishes to modify the way Lucene scores documents.
Similarity has two subclasses: DefaultSimilarity and SimilarityDelegator. For
this discussion we are interested only in DefaultSimilarity. As it name suggests, the
DefaultSimilarity class is in effect if the user does nothing to modify the scoring cal-
culation and lets Lucene work. Before we cover how to utilize this class, a discussion of
Lucene’s scoring methodology is in order.

 Lucene utilizes the formula in equation 12.28 for scoring document d against a
particular query q.

Some of these terms should appear familiar from the earlier discussion of the vector
space model. Let’s examine each in some detail before moving on to examples of
what happens when they are manipulated:

Equation 12.28 Lucene’s interpretation of the vector space scoring formula, which
takes much more into account

365Exploring Lucene’s scoring approach and the DefaultSimilarity class
■ coord(int overlap, maxOverlap) A query time score adjustment that takes into
account the number of query terms that are matched by a document. Overlap is
the number of matched terms, and maxOverlap is the total count of terms in the
query. The default implementation is given in equation 12.29.

■ queryNorm(float sumOfSquaredWeights) Applied at query time. This quantity is
multiplied against all returned documents so that it does not affect a docu-
ment’s ranking (the order of returned results), but it will affect its score. If the
weight of a term increases, the queryNorm value will decrease, thereby decreas-
ing the score. Its main purpose is to make scores comparable between dissimilar
queries or even different indexes. We’ll show an example of this in
section 12.2.2. The default implementation is shown in equation 12.30.

The sumOfSquaredWeights value is taken care of by the org.apache.lucene.
search.Weight object, which we’ll discuss in section 12.3.1.

■ tf (float frequency) This is the term frequency of the vector space model. Nor-
mally, higher term frequencies produce higher scores. Lower term frequencies
produce lower scores. The default implementation is shown in equation 12.31.

■ idf(Term term, Searcher searcher) The idf of the vector space model. It computes a
score factor for a term. The default implementation is shown in equation 12.32.

■ term.getBoost(t) A query time score adjustment for a particular term in a
query. It is set by Query.setBoost(float b). In Lucene there is no direct way
to get at the boost factor of a single term in a multiterm query, so it is not part
of the following formula, but since a query contains multiple TermQuery
objects, one each for the terms, Query.getBoost() can be used for accessing a
term’s boost factor.

■ norm(t, d) Applied at indexing time, hence the need to apply the same Simi-
larity at both indexing and querying time. Norm encases several boost and
length factors.

=
max
overlapcoord
Overlap

Equation 12.29 The number of matched terms divided by the
total number of terms in the query

= 1queryNorm
sumOfSquaredWeights Equation 12.30 The query normalization factor

=tf frequency Equation 12.31 The term frequency factor. This is equivalent to the term
frequency of the vector space model.

⎛ ⎞= + ⎜ ⎟+⎝ ⎠
1 log

1
numdocsidf
docFreq

Equation 12.32 Lucene’s inverse document
frequency calculation

366 CHAPTER 12 Document ranking
■ document boost Established by Document.setBoost(float b). This applies a
separate boost factor to a particular document before it is added to the docu-
ment index, allowing it to be scored differently from the rest of the documents.

■ field boost—Established by Field.setBoost(float b). This functions the same
way as document boost, except it is applied to a single field in the document.

■ lengthNorm Similar to document normalization, which was discussed in the pre-
vious normalization section, except that it applies to an individual document
field instead of the entire document. Its effect is to decrease the scoring contri-
bution of fields with many terms and to increase scoring for shorter fields.

The default implementation is given in equation 12.33.

This is definitely not the easiest Similarity calculation to understand, especially
because of the way it is stored in the index. This formula translates to the field.get-
Boost() value being multiplied by Document.getBoost() of the document containing
this field. If a document has multiple fields with the same name, all such values are
multiplied together. This product is then multiplied by the value Similar-

ity.lengthNorm(String, int) and encoded by Similarity.encodeNorm(float) as
a single byte to reduce its storage size. It is then stored in the document index. If you
are interested in the algorithm used to accomplish this, refer to the JavaDoc for Simi-
larity.encodeNorm(float).

 At query time, this value is read from the index and decoded back to a float value
by the static method Similarity.decode(n). There will be a loss of precision here
resulting from rounding factors of the encoding algorithm to and from the byte rep-
resentation. Remember, there’s no contract anywhere stating that decode

(encode(x)) = x.
 That is enough of equations and theory for a while. Let’s take this information and

apply it by exploring several examples and examining how scores change as we vary
the quantities.

12.2.1 DefaultSimilarity examples

Let’s see how Lucene puts all of the terms into action to determine a document’s score.
 To analyze how the scoring process works, we’ll utilize the org.apache.

lucene.search.Searcher class, which contains the explain (Query query, int

hitId) method. The first parameter of this method is the original query we employed
to generate results. The second is the Lucene Hit.Id number of the document we
want to examine. This is available from the document’s Hit object, which is obtained
by iterating through the returned Hits object. Once you examine the code, you’ll see
how easy it is.

Equation 12.33 Lucene’s
document length normalization
factor applied at index time

367Exploring Lucene’s scoring approach and the DefaultSimilarity class
NOTE All of the examples in this chapter utilize the DVD Store example pro-
vided with the Seam framework download available at http://www.seam-
framework.org/Download. We decided to use the DVD Store because of
the long descriptions of each of the DVDs, which helps in showing the
length influence on normalization. Plus they make the examples more
realistic. To make things a little easier on you, this index is available for
download on the book’s internet site.

First we’ll search on one term to obtain a baseline value to compare changes against.
Then we’ll change the term frequency calculation. Next we’ll search on two terms and
examine the differences in the explain printout; finally we’ll adjust the coord factor
and see exactly what it can do to a score.
SEARCHING ON ONE TERM

We’ll query the Product index for all occurrences of the term salesman in the descrip-
tion field in listing 12.1.

public class TestSalesmanSearch extends SearchTestCase {

 @Test
 public void searchProduct() throws Exception {
 FullTextSession session = Search.getFullTextSession(openSession());
 Transaction tx = session.beginTransaction();

 try {
 Query query = new TermQuery(new Term("description"
 "salesman"));
 System.out.println(query.toString());

 org.hibernate.search.FullTextQuery hibQuery =
 session.createFullTextQuery(query,
 com.jboss.dvd.seam.Product.class);
 hibQuery.setProjection(FullTextQuery.DOCUMENT,
 FullTextQuery.SCORE,
 FullTextQuery.DOCUMENT_ID);

 List<Object[]> results = hibQuery.list();

 assert results.size() > 0: "no results returned";
 for (Object[] result : results)
 System.out.println("score => " + result[1]);
 System.out.println(hibQuery
 .explain((Integer) result[2]));
 }
 tx.commit();
 }
 finally {
 session.close();
 }
 }
}

First, declare a single TermQuery on the description field for salesman B. Next,
declare a projection of the document, score, and document id C. This projection is

Listing 12.1 Searching Product.description for salesman

Query for
single term,
salesmanB

Declare a
projection

C

Iterate the matching
documentsD

Call explain on
the resultsE

http://www.seam-framework.org/Download
http://www.seam-framework.org/Download
http://www.seam-framework.org/Download

368 CHAPTER 12 Document ranking
necessary since we’re using a bare index: the index is not backed by a database, so we
must prevent Hibernate Search from querying it. At D we iterate over the results and
print the explain method’s contents E. The explain method returns an instance of
the org.apache.lucene.search.Explanation class.

 E shows one of the ways to access the contents of the explain method. The other
way is to declare the explanation in the projection shown at C. We’ll demonstrate this
in the next example, which is shown in listing 12.4. The Explanation class overrides
its toString() method and supplies a nicely formatted description of how a docu-
ment is scored against the query, as shown in listing 12.2. A first-rate feature of this
generated description is that the printout is not cluttered with information we’re not
interested in (yet). Similarity values that remain at their default are not reported on
by the explain method.

NOTE The contents of the description field of each document are quite large.
Consequently, the five resulting product descriptions we’ll be working
with are not reproduced here. It’s an easy process for you to display the
description fields. That way you can examine them and see exactly what
each one contains. We’ll even reduce the results to the top three because
they show us all we need to see.

 score => 0.84061575
 0.84061575 = (MATCH) fieldWeight(description:salesman
 in 108), product of:
 1.0 = tf(termFreq(description:salesman)=1)
 5.379941 = idf(docFreq=5)
 0.15625 = fieldNorm(field=description, doc=108)

 score => 0.5944051
 0.5944051 = (MATCH) fieldWeight(description:salesman
 in 471), product of:
 1.4142125 = tf(termFreq(description:salesman)=2)
 5.379941 = idf(docFreq=5)
 0.078125 = fieldNorm(field=description, doc=471)

 score => 0.58843106
 0.58843106 = (MATCH) fieldWeight(description:salesman
 in 57), product of:
 1.0 = tf(termFreq(description:salesman)=1)
 5.379941 = idf(docFreq=5)
 0.109375 = fieldNorm(field=description, doc=57)

Listing 12.2 is the output of the Searcher.explain() method for each of the first
three matching documents. B contains a lot of information in just four lines. The
first line contains the document’s fieldWeight (score) value along with the query
description:salesman followed by the Hit.Id of the document in the repository. In
this case the tf, the idf, and the fieldNorm values were multiplied together. In the sec-
ond line is the term frequency value, which is the number of times the term appears

Listing 12.2 Formatted printout of the explain method

The score and
its calculation

B

Higher term
frequency

The
fieldNorm
value

369Exploring Lucene’s scoring approach and the DefaultSimilarity class
in the document. The third line is the idf, showing that there were five matching doc-
uments in the repository. In line 4 is the field normalization value, which translates to
the lengthNorm value discussed in 12.3.

NOTE You may be wondering why we bothered to print the score for each of the
explained results. This printed score is the normalized score returned by
Hit.Id, whereas the score listed in B is a raw score. It’s possible that the
raw score of B can be greater than 1, in which case a normalized result
for each score is produced, dividing each one by the highest. Think back
to our discussion of normalization in section 12.1.2. We’ll present an
example of this shortly.

Looking at listing 12.2 we can see that our earlier statement concerning the explain
method producing uncluttered output is true. This is a concise listing of exactly what
went into scoring the documents. Some may say that this listing can be misleading
because it doesn’t show all of the factors, but what it does not show are those values
that remained at their defaults, and that’s where we’re going next.

 Let’s override the DefaultSimilarity class, change some values one at a time, and
see how document scores are affected.
CHANGING THE TERM FREQUENCY CALCULATION

You’re free to extend Similarity and override the classes’ abstract methods in any
way you deem fit to adjust document scoring, but org.apache.lucene.search.
DefaultSimilarity makes this task a little easier.

 Extending the DefaultSimilarity class allows it to function in a manner analo-
gous to what an adapter class does for an interface. It supplies default implementa-
tions for the abstract methods of the Similarity class that you’re not interested in,
while allowing you to override whichever methods you wish to change.

 Let’s start with a simple scoring adjustment. We’ll assume for this scenario that we
aren’t interested in how many times a term appears in a document. In other words,
term frequency doesn’t matter to us. Instead of the normal term frequency, our Scor-
ingTestSimilarity class will return the value 1.0F instead of the normal square root
of the actual term frequency. First we define our ScoringTestSimilarity class in list-
ing 12.3.

 public class ScoringTestSimilarity
 extends DefaultSimilarity {
 @Override
 public float tf(float freq) {
 return 1.0F;
 }
 }

In B we’ve replaced the default term frequency calculation of the square root of the
frequency to return a float of 1.0.

Listing 12.3 Extending the DefaultSimilarity to override frequency calculation

Extend the
DefaultSimilarity class

Override the
tf(float freq) method

The returned valueB

370 CHAPTER 12 Document ranking
 Once we have our implementation changed to the way we want it, we have to
replace the DefaultSimilarity class with our class before we perform the query. This
is done with one line of code, as shown in listing 12.4.

public class TestSalesmanSearch extends SearchTestCase {

 @Test
 public void searchProduct() throws Exception {

 FullTextSession session = Search.getFullTextSession(openSession());
 Transaction tx = session.beginTransaction();

 try {
 Query query = new TermQuery(new Term("description",
 "salesman"));
 System.out.println(query.toString());

 org.hibernate.search.FullTextQuery hibQuery =
 session.createFullTextQuery(query,
 com.jboss.dvd.seam.Product.class);
 hibQuery.setProjection(FullTextQuery.DOCUMENT,
 FullTextQuery.SCORE,
 FullTextQuery.DOCUMENT_ID,
 FullTextQuery.EXPLANATION);

 List<Object[]> results = hibQuery.list();

 assert results.size() > 0: "no results returned";
 for (Object[] result : results) (
 System.out.println("score => " + result[1]);

 System.out.println(result[3].toString());
 }
 tx.commit();
 }
 finally {
 session.close();
 }
 }

 protected void configure(org.hibernate.cfg
 ➥.Configuration cfg) {
 cfg.setProperty("hibernate.search.default
 ➥.directory_provider",
 FSDirectoryProvider.class.getName());
 cfg.setProperty("hibernate.search.default.indexBase",
 ➥locateBaseDir().getAbsolutePath());
 cfg.setProperty("hibernate.search.similarity",
 ➥"com.manning.hsia.ch12.ex12_4.ScoringTestSimilarity");
 }
}

We declare a projection that contains the FullTextQuery.EXPLANATION element B.
This is the second method of providing an explanation, as opposed to calling the
explain method from the query as we did in listing 12.1 at E. C presents the results

Listing 12.4 Replacing the DefaultSimilarity class with our own implementation

Declare projection
including
explanation

B

Print the
explanation

C

Change the
scoring
similarity

D

371Exploring Lucene’s scoring approach and the DefaultSimilarity class
of the explanation projection. The DefaultSimilarity class is replaced at D by the
ScoringTestSimilarity class.

 Executing this code produces the results in listing 12.5.

score => 0. 84061575
0.84061575 = (MATCH) fieldWeight(description:salesman
 in 108), product of:
 1.0 = tf(termFreq(description:salesman)=1)
 5.379941 = idf(docFreq=5)
 0.15625 = fieldNorm(field=description, doc=108)

score => 0. 58843106
0.58843106 = (MATCH) fieldWeight(description:salesman
 in 57), product of:
 1.0 = tf(termFreq(description:salesman)=1)
 5.379941 = idf(docFreq=5)
 0.109375 = fieldNorm(field=description, doc=57)

score => 0. 42030787
0.42030787 = (MATCH) fieldWeight(description:salesman
 in 217), product of:
 1.0 = tf(termFreq(description:salesman)=1)
 5.379941 = idf(docFreq=5)
 0.078125 = fieldNorm(field=description, doc=217)

score => 0. 42030787
0.42030787 = (MATCH) fieldWeight(description:salesman
 in 471), product of:

Listing 12.5 The results showing that the score of several documents has changed

Implementing different similarities per entity
Listing 12.4 demonstrates how to set the similarity when you want to override what
is provided by default. This applies across all entities unless you override it for a par-
ticular entity or entities. To override the similarity for an entity, use the @Similarity
annotation. This annotation has a target of @Target(ElementType.TYPE), meaning
that it is applicable only at the entity level. The following code snippet demonstrates
its use:

@Entity
@Indexed
@Similarity(impl = MySimilarity.class)
public class Dvd {
…
}

Please be warned that in changing similarities we’re addressing a difficult topic at
best! The more similarities you override, the more difficult it becomes to assess the
results. A lot of time goes into testing score adjustments and ensuring that they pro-
duce the results you’re expecting. Even if you override only a single similarity trying
to move results up or down the scoring ladder, you can expect a lot of testing time to
assess results.

No change to
document 108

B

fieldNorm valueC

Moved here from
3rd place

D

fieldNorm valueE

Moved here
from 4th place

F

fieldNorm valueG

Moved here
from 2nd placeH

372 CHAPTER 12 Document ranking
 1.0 = tf(termFreq(description:salesman)=2)
 5.379941 = idf(docFreq=5)
 0.078125 = fieldNorm(field=description, doc=471)

The fourth result was included here to help show the changes that have taken place.
Notice how much the documents (D, F, and H) have shuffled; but not B. Even
though the printout still shows the actual term frequency with (description:sales-
man)=2, the term frequency at I has changed from 2 to 1 as we expected from our
overriding of the term frequency method. This changed the term frequency value
from 1.4142125 to 1, reducing the overall score and dropping it lower in the results.

 We need to discuss one last thing about this explanation printout. Take a close
look at the fieldNorm values B, E, G, and J. Hopefully you have noticed that the
field normalization value has a huge impact on the final score. When the field you are
searching is long (read that as “has many terms”), the fieldNorm value can become
quite small, reducing the score by a large amount.

 There are several ways around this normalization effect if you wish to eliminate it
from your method of scoring:

■ Implement your own Similarity class, overriding the lengthNorm calculation. We’re
overriding the Similarity class in these examples. If you’re going to override
this calculation with your own, you must do so both at indexing time by employ-
ing the IndexWriter.setSimilarity(Similarity similarity) method and at
query time by utilizing the same technique employed in listing 12.4.

■ Write your own IndexReader class that ignores index norm values. This is the most
difficult of these choices to implement and outside the scope of this book. The
authors recommend you search the Lucene mailing list archives for examples.

■ Add the Field.Index NO_NORMS constant to eliminate norm calculations on a
particular field.

■ Call setOmitNorms(boolean omitNorms) on the appropriate field. This, along
with the NO_NORMS method mentioned in the previous bullet, is the easiest way
to prevent normalization effects for a particular field.

WARNING Beware when disabling norms: you must disable norms for every single
occurrence of that field in any document in your index. If even one
document exists in which you did not disable norms for that field, that
will spread to all other docs anytime index segments merge.

Let’s go through our third example to demonstrate querying by more than one term
and the resulting changes that occur to the explain method’s printout. This will uti-
lize a BooleanQuery to effect the change.
SEARCHING ON MULTIPLE TERMS

When querying on more than one term, documents matching more of the query’s
terms will normally receive a higher score than those matching on a lesser number. In
other words, high match counts increase scores, while low match counts do not. This

Term frequency
changed

I

fieldNorm
value

J

373Exploring Lucene’s scoring approach and the DefaultSimilarity class
does not have to be the case. Since these values can be whatever the developer
chooses, their ratio could actually be reduced with a high match count.

 To demonstrate this we’ll look at the coord(int overlap, maxOverlap) calcula-
tion and how changing it can affect document scoring. Listing 12.6 is the query code
we’re going to use for this example.

BooleanQuery query = new BooleanQuery();
query.add(new BooleanClause(
 new TermQuery(new Term(FIELD_NAME,
 "spielberg")),
 BooleanClause.Occur.MUST));

query.add(new BooleanClause(
 new TermQuery(new Term(FIELD_NAME,
 "war")),
 BooleanClause.Occur.SHOULD));

System.out.println(query.toString());

org.hibernate.search.FullTextQuery hibQuery =
 session.createFullTextQuery(query,
 Product.class);
hibQuery.setProjection(FullTextQuery.DOCUMENT,
 FullTextQuery.SCORE,
 FullTextQuery.DOCUMENT_ID);

List<Object[]> results = hibQuery.list();

assert results.size() > 0: "no results returned";
for (Object[] result : results) {
 System.out.println("score => " + result[1]);

 System.out.println(hibQuery
 .explain((Integer)result[2]));
}

This query searches for two terms: the description field for the term spielberg B and
the description for war C. The explanation is printed at D. Once we execute this
query, we receive the explanation printout shown in listing 12.7.

score => 1.0
1.009682 = (MATCH) sum of:
 0.72382677 = (MATCH) weight(description:spielberg in
 230), product of:
 0.7705941 = queryWeight(description:spielberg),
 product of:
 4.338487 = idf(docFreq=16)
 0.17761816 = queryNorm
 0.93931 = (MATCH) fieldWeight(description:spielberg
 in 230), product of:
 1.7320508 = tf(termFreq(description:spielberg)=3)

Listing 12.6 Querying on more than one term with DefaultSimilarity

Listing 12.7 Results of a query on two terms with DefaultSimilarity unchanged

Query description
for spielberg

B

Query description
for war

C

Print the explanationD

Print the explanationD

The raw scoreB

The score for
spielberg

C

374 CHAPTER 12 Document ranking
 4.338487 = idf(docFreq=16)
 0.125 = fieldNorm(field=description, doc=230)
 0.2858553 = (MATCH) weight(description:war in 230),
 product of:
 0.63732624 = queryWeight(description:war), product of:
 3.5881817 = idf(docFreq=35)
 0.17761816 = queryNorm
 0.44852272 = (MATCH) fieldWeight(description:war in 230),
 product of:
 1.0 = tf(termFreq(description:war)=1)
 3.5881817 = idf(docFreq=35)
 0.125 = fieldNorm(field=description, doc=230)

Listing 12.7 shows that each queried term has it own calculation set, as you’d expect.
The individual term scores C and D are composed of the product of the query
weight and the field weight. These scores are in turn summed to produce the raw
score B.

 We have space for one last example. We’ll override the coord factor to demon-
strate how scoring multiterm matches can be altered.
CHANGING THE COORD(INT OVERLAP, INT MAXOVERLAP)

Now we’ll modify the coord function that we introduced in section 12.2. Our Scor-
ingTestSimilarity will override the coord(int overlap, int maxOverlap) method
of DefaultSimilarity in listing 12.8 so that the higher the overlap value becomes,
the lower the value that is returned.

package org.apache.lucene.search;

public class ScoringTestSimilarity extends DefaultSimilarity {
 @Override
 public float coord(int overlap, int maxOverlap) {
 if (overlap == 2) {
 return 0.5F;
 }
 if (overlap == 1) {
 return 2.0F;
 }
 return 0.0F;
}

Executing the code in listing 12.4 produces the explanation printout of listing 12.9.

score => 0.427106
0.504841 = (MATCH) product of:
 1.009682 = (MATCH) sum of:
 0.72382677 = (MATCH) weight(description:spielberg
 in 230),
 product of:
 0.7705941 = queryWeight(description:spielberg),

Listing 12.8 Overriding coord(int overlap, int maxOverlap)

Listing 12.9 Explanation for document 230 after changing the coord method

The score for warD

Increasing overlap;
decreasing value

The document scoreB
The raw scoreC

The basic score sum
of the field scores

D

Field score for spielbergE

375Exploring Lucene’s scoring approach and the DefaultSimilarity class
 product of:
 4.338487 = idf(docFreq=16)
 0.17761816 = queryNorm
 0.93931 = (MATCH) fieldWeight(description:spielberg
 in 230), product of:
 1.7320508 = tf(termFreq(description:spielberg)=3)
 4.338487 = idf(docFreq=16)
 0.125 = fieldNorm(field=description, doc=230)
 0.2858553 = (MATCH) weight(description:war in 230),
 product of:
 0.63732624 = queryWeight(description:war), product of:
 3.5881817 = idf(docFreq=35)
 0.17761816 = queryNorm
 0.44852272 = (MATCH) fieldWeight(description:war
 in 230), product of:
 1.0 = tf(termFreq(description:war)=1)
 3.5881817 = idf(docFreq=35)
 0.125 = fieldNorm(field=description, doc=230)
 0.5 = coord(2/2)

Document 230 in listing 12.7 was the top result returned. Applying our new Scor-
ingTestSimilarity class moved it all the way to fourteenth place. Looking at
listing 12.9 you can see that the basic score D is the sum of the weight for the spielberg
query term E and the war query term F, but the raw score is where our change to
the Similarity class comes into effect. The raw score C is the product of the basic
score D and our returned value G. The fact that the score was reduced because more
of the terms matched (two) cut the raw score in half, which is exactly what we wanted
to accomplish.

 Did you happen to notice the difference between the score contained in the Hit
object of this result B and the raw score C? The raw score of the first document
returned was 1.1820041. If the top document’s raw score is greater than 1, we utilize
this value to normalize the score of all returned documents by dividing all of their
scores by this value. Dividing C in listing 12.9 by this value yields 0.4271012.

 If you look at listing 12.7 you’ll notice the same situation. The only difference is
that this is the top document returned for this query. Because its raw score is greater
than 1.0, it is divided by itself, yielding 1.0, and all other returned documents’ raw
scores are divided by it in turn.

 Enough on the Similarity class. Before we move on to other classes that are used
to affect scoring, we’d like to briefly discuss one more thing, query boosting.

12.2.2 Query boosting

We briefly mentioned query boosting in the t.getBoost(t) paragraph of the
DefaultSimilarity class. Let’s change listing 12.6 slightly and apply a boost factor to
our query term of war in listing 12.10. Before we apply the boost, we say that war
should appear in the results, and by adding a boost to it we are saying that if war does
appear, score it higher than those results where it does not appear.

Field score
for war

F

The coord(int
overlap, int
maxOverlap)factor

G

376 CHAPTER 12 Document ranking

BooleanQuery query = new BooleanQuery();
query.add(new BooleanClause(new TermQuery(
 new Term(FIELD_NAME, "spielberg")),
 BooleanClause.Occur.MUST));

TermQuery war =
 new TermQuery(new Term(FIELD_NAME, "war"));
war.setBoost(2.0F);
BooleanClause c =
 new BooleanClause(war, BooleanClause.Occur.SHOULD);
query.add(c);
System.out.println(query.toString());

org.hibernate.search.FullTextQuery hibQuery =
 session.createFullTextQuery(query, Product.class);
hibQuery.setProjection(FullTextQuery.DOCUMENT,
 FullTextQuery.SCORE,
 FullTextQuery.DOCUMENT_ID);

List<Object[]> results = hibQuery.list();

assert results.size() > 0: "no results returned";
for (Object[] result : results) {

 System.out.println("score => " + result[1]);

 System.out.println(hibQuery
 .explain((Integer)result[2]));
}

Here, in listing 12.11, is the explanation of the results, which we are going to compare
with listing 12.7. We are showing only the top two results here.

score => 0.86979103
0.86979103 = (MATCH) sum of:
 0.485959 = (MATCH) weight(description:spielberg in 230),
 product of:
 0.5173574 = queryWeight(description:spielberg),
 product of:
 4.338487 = idf(docFreq=16)
 0.11924834 = queryNorm
 0.93931 = (MATCH) fieldWeight(description:
 spielberg in 230),
 product of:
 1.7320508 = tf(termFreq(description:spielberg)=3)
 4.338487 = idf(docFreq=16)
 0.125 = fieldNorm(field=description, doc=230)
 0.383832 = (MATCH) weight(description:war^2.0 in 230),
 product of:
 0.8557694 = queryWeight(description:war^2.0), product of:
 2.0 = boost

Listing 12.10 Boosting one term of a two-term query to score it higher

Listing 12.11 The explanation of the results after boosting a term in a two-term query

Double the query
boost factor

B

Examine the
explanation

C

The top score has decreasedB

The queryNorm
has decreased

C

DThe queryWeight
increased for war

Double the query

boost factorE

377Exploring Lucene’s scoring approach and the DefaultSimilarity class
 3.5881817 = idf(docFreq=35)
 0.11924834 = queryNorm
 0.44852272 = (MATCH) fieldWeight(description:war in 230),
 product of:
 1.0 = tf(termFreq(description:war)=1)
 3.5881817 = idf(docFreq=35)
 0.125 = fieldNorm(field=description, doc=230)

score => 0.6644006
0.6644006 = (MATCH) sum of:
 0.28056857 = (MATCH) weight(description:spielberg in 15),
 product of:
 0.5173574 = queryWeight(description:spielberg), product of:
 4.338487 = idf(docFreq=16)
 0.11924834 = queryNorm
 0.5423109 = (MATCH) fieldWeight(description:spielberg in 15),
 product of:
 1.0 = tf(termFreq(description:spielberg)=1)
 4.338487 = idf(docFreq=16)
 0.125 = fieldNorm(field=description, doc=15)
 0.383832 = (MATCH) weight(description:war^2.0 in 15),
 product of:
 0.8557694 = queryWeight(description:war^2.0), product of:
 2.0 = boost
 3.5881817 = idf(docFreq=35)
 0.11924834 = queryNorm
 0.44852272 = (MATCH) fieldWeight(description:war in 15),
 product of:
 1.0 = tf(termFreq(description:war)=1)
 3.5881817 = idf(docFreq=35)
 0.125 = fieldNorm(field=description, doc=15)

We’d be willing to bet that this isn’t what you expected. Comparing this to listing 12.7,
you can see that the document scores actually dropped B, but the things we expected
to change have changed in exactly the way we expected:

■ The document’s ranking has not changed. Result 1 in listing 12.7 is still result 1
here. Result 2 is still result 2, and so on.

■ The 2.0 boost factor E for the war term increased the query weight for that
term from 0.63732624 to 0.8557694 D.

The queryNorm value decreased C since the war term weight increased. We weren’t
expecting it to have that big of an impact. Remember, the queryNorm value doesn’t
affect document ranking; it affects matching documents’ scores equally. Its main pur-
pose is to make scores comparable between dissimilar queries or even different
indexes.

 This is the example we promised to show you when we talked about the queryNorm
quantity. This example doubles your return. It shows both the effect of boosting a
term in a query and what that does to the queryNorm calculation.

 Some other components also affect document scoring, namely, the Scorer class
and the Weight class, and we have to warn you that working with these classes is not

The queryNorm
has decreased

C

378 CHAPTER 12 Document ranking
for the faint of heart. It will really help you to keep things straight if you remember
the following facts about each of these classes:

 The Scorer class:

■ Calculates document scores based on a given Similarity
■ Is created by a Weight class via Weight.scorer(IndexReader reader)

The Weight class:

■ Is created by a query: Query.createWeight(IndexSearcher searcher)
■ Is an internal representation of the query that allows the query to be reused by

the searcher

We’ll look first at the Scorer class and its responsibilities in the scoring calculation.

12.3 Scoring things my way
The Scorer class is the focal point of Lucene scoring. If it helps, you can think of this
class during the scoring process as functioning similarly to a JDBC RowSet having a for-
ward-only cursor with the RowSet data as the group of documents that matched a
query.

 Scorer is an abstract class that defines the following abstract methods:

■ public abstract boolean next(); This method advances to the next match-
ing document if one exists.

■ public abstract int doc(); This method returns the current document id
value. Just as with a JDBC RowSet, this is not a valid call until the next()method
has been called one or more times.

■ public abstract boolean skipTo(int target); Overriding this method
could be as simple as using a basic loop, as shown here, which is fine for our
purposes:

 boolean skipTo(int target) {
 do {
 if (!next())
 return false;
 } while (target > doc());
 return true;
 }

■ public abstract Explanation explain(int doc); This is the method that
lays out the scoring explanation so well. It can become quite involved, so we rec-
ommend that you examine the explain method of the TermScorer class and
use that as a guide in writing your own explain method.

■ public abstract float score(); This is the method we’ve been looking for.
Here is where the actual scoring procedure is defined, and you’re free to
change document scoring by overriding this method. For our purposes we’ll
examine the TermScorer’s score method. This method in conjunction with the
TermScorer’s constructor is a good basic example for us to work with. The con-
structor and score()method are given in listing 12.12.

379Scoring things my way

 MyTermScorer(Weight weight,
 TermDocs td,
 Similarity similarity,
 byte[] norms) {
 super(similarity);
 this.weight = weight;
 this.termDocs = td;
 this.norms = norms;
 this.weightValue = weight.getValue();

 for (int i = 0; i < SCORE_CACHE_SIZE; i++)
 scoreCache[i] = getSimilarity()
 .tf(i) * weightValue;
 }

 public float score() {
 int f = freqs[pointer];

 float raw =
 f < SCORE_CACHE_SIZE
 ? scoreCache[f]
 : getSimilarity().tf(f)*weightValue;

 return raw * Similarity.decodeNorm(norms[doc]);
 }

The constructor B caches a number of score values for fast access at C. These scores
are calculated by retrieving the Similarity.tf() calculation over the range of cache
index values multiplied by the weight.getValue()quantity of the query. Since the
default implementation of the tf() method is the square root of the passed-in term,
the values inserted into the cache are 0.0, 1.0, 1.414, 1.732, and so on, each multiplied
by the weight value. The term frequency D is utilized E to look up the score in the
cache or calculate the score if the number of terms is greater than the cache size. This
calculation is the same as the constructor’s calculation C, as you would expect.
Finally, the raw score F is determined by normalizing the cache score against the
decoded normalization value of this document and returned.

NOTE The TermScorer is one of the easiest score implementations to under-
stand. If you followed this even at just a cursory level, you have to have
noticed how prevalent the Similarity class is in this calculation. Because
of this, the authors recommend that, before you try to implement your
own scorer, you determine whether what you want to accomplish can be
done through reimplementing the Similarity class. This may save you
not only a lot of work but also possibly a lot of long and sleepless nights.

We’re going to hold off on an example for a bit until we cover the last important class
in the scoring process, Weight. Why we are holding off will become apparent when
you see just how intertwined these classes are.

Listing 12.12 The score() method of the MyTermScorer class

The TermScorer
constructor

B

Calculate and
cache score values

C

The score method

Cached term
frequency (tf) countsD

Get cached value or
calculate a valueE

Return the
raw score

F

380 CHAPTER 12 Document ranking
12.3.1 Modifying a query’s Weight class

An instance of the Weight class is specific to a particular query. After all, it has two pur-
poses. First and foremost is to normalize a query so that searching does not modify the
query in some way. This allows the query to be reused. Second is to build a Scorer
class. In other words, a query has an associated Weight instance that it utilizes before
performing the search process.

 We can employ a custom Weight class in several ways. The abstract
org.apache.lucene.search.Searcher class implements the Searchable interface,
which defines three abstract methods that take a Weight instance as one of their
parameters. These are:

■ void search(Weight weight, Filter filter, HitCollector results)
■ TopDocs search(Weight weight, Filter filter, int n)
■ TopFieldDocs search(Weight weight, Filter filter, int n, Sort sort)

These methods are very low-level API calls, and each returns matching documents dif-
ferently, so we suggest you read the documentation to see the strengths and weak-
nesses of each in relation to what you’re trying to do.

WARNING Lucene is a dynamic project and its code changes constantly with mod-
ifications and additions. Consequently, the code shown in the Weight
class in this section and the Scorer class in section 12.3.2 examples
probably have changed since this was written. The methods in these
classes we are most concerned with likely have not changed but be
sure to look at the latest source code.

The last way to change the way weighting is done is to not only develop your own
Weight class but also to develop your own Query class and have your Query employ
your Weight. This isn’t as bad as it sounds. Query classes can be extended, so a lot of
the work in this respect is already done for you. The Weight class is different, though.
If you’ve downloaded the Lucene source code (if you have not, we recommend you
do so now) and happened to have looked in the org.apache.lucene.search pack-
age, you’ll notice that there are no Weight classes there. Many Weight class implemen-
tations are inner classes of the query they’re related to. As mentioned previously, a
Weight class is specific to a particular query. Making them inner classes assures that
this is the case. If you look at the org.apache.lucene.search.spans package, you’ll
see that these queries all use the non-inner class SpanWeight. The manner of imple-
mentation is up to you.

 The sequence of operations for weighting is contained in the Query.weight(
Searcher searcher) method, shown in listing 12.13.

 public Weight weight(Searcher searcher)
 throws IOException {
 Query query = searcher.rewrite(this);
 Weight weight = query.createWeight(searcher);

Listing 12.13 The weight(Searcher searcher) method of Query

Instance of
Weight created

381Scoring things my way
 float sum = weight.sumOfSquaredWeights();

 float norm =
 getSimilarity(searcher).queryNorm(sum);

 weight.normalize(norm);
 return weight;
 }

NOTE For the following discussion the order of the calls in listing 12.13 is criti-
cal to understanding the calculations.

A Weight class must implement the Weight interface, which contains the following six
method signatures:

■ Query getQuery(); This returns the Query that this Weight represents.
■ float getValue(); This returns the calculated weight for this query. For a

TermQuery this is idf * idf * term boost * queryNorm (queryNorm is calculated
by a call to the normalize method).

■ float sumOfSquaredWeights(); This calculates and returns idf * idf *
boost2.

■ void normalize(float norm); The value calculated by sumOfSquaredWeights
is passed to the Similarity.queryNorm() method, and then the resulting nor-
malized value is passed to this method. The value returned by the getValue
method is then figured and stored in the Weight instance.

■ Scorer scorer(IndexReader reader); This constructs an instance of the
Scorer class. If you’ve implemented your own Scorer, you’d retrieve an
instance of it here.

■ Explanation explain(IndexReader reader, int doc); This is the Weight
class’s implementation for an explanation printout of its effect on a document’s
score. We recommend again that you examine the explain() method of the
TermScorer class.

NOTE For a single-term query, boosting the term makes little sense. All the
matching document’s scores would be boosted by the same amount.
Where this boost value shines, for example, is boosting one of the terms
of a two-term query when the query ORs the terms. Any documents match-
ing the boosted query would have their score increased over documents
matching the other term.

For our example we’ll stay with the TermQuery class because it’s one of the simplest
implementations. We’ll extend TermQuery and define an inner Weight class where we
have replaced the final multiplication by the idf in the normalize method with a con-
stant value of 6, as shown at B in listing 12.14. This will be the only change made, and
it should increase the document scores. We also must write a scorer method, but for

Query normalization
factor calculated

B

Normalization factor
passed to instance

382 CHAPTER 12 Document ranking
this example it won’t do anything different than the default implementation. We’ll
work with it shortly.

public class MyTermQuery extends TermQuery {
 Private Term term;

 public class MyWeight implements Weight {
 private Similarity similarity;
 private float value;
 private float idf;
 private float queryNorm;
 private float queryWeight;

 public MyWeight(Searcher searcher) throws IOException {
 this.similarity = getSimilarity(searcher);
 idf = similarity.idf(term, searcher);
 }

 public Query getQuery() {
 return MyTermQuery.this;
 }

 public float getValue() {
 return value;
 }

 public float sumOfSquaredWeights() throws IOException {
 queryWeight = idf * getBoost()
 return queryWeight * queryWeight;
 }

 public void normalize(float queryNorm) {
 this.queryNorm = queryNorm;
 queryWeight *= queryNorm;
 value = queryWeight * 6;
 }

 public Scorer scorer(IndexReader reader)
 throws IOException {
 TermDocs termDocs = reader.termDocs(term);

 if (termDocs == null) {
 return null;
 }

 return new MyTermScorer(this,
 termDocs,
 similarity,
 ➥reader.norms(term.field()));
 }

 public Explanation explain(IndexReader reader,
 ➥int doc)
 throws IOException {
 removed for brevity, identical to
 Query explanation method

Listing 12.14 Extending TermQuery and implementing an inner Weight class

Return the
enclosing query

Remove the idf term
to change the weight

Create an instance
of a Scorer class

B

383Scoring things my way
 }
 }

 public MyTermQuery(Term t) {
 super(t);
 term = t;
 }

 @Override
 protected Weight createWeight(Searcher searcher)
 throws IOException {
 return new MyWeight(searcher);
 }

 public boolean equals(Object o) {
 if (!(o instanceof TermQuery))
 return false;
 MyTermQuery other = (MyTermQuery)o;
 return (this.getBoost() == other.getBoost())
 && this.term.equals(other.term);
 }
}

Here are the document explanations with our change in place:

 score => 0.9375
 0.84061575 = (MATCH) fieldWeight(description:salesman in 108),
 product of:
 1.0 = tf(termFreq(description:salesman)=1)
 5.379941 = idf(docFreq=5)
 0.15625 = fieldNorm(field=description, doc=108)

 score => 0.6629126
 0.5944051 = (MATCH) fieldWeight(description:salesman in 471),
 product of:
 1.4142125 = tf(termFreq(description:salesman)=2)
 5.379941 = idf(docFreq=5)
 0.078125 = fieldNorm(field=description, doc=471)

 score => 0.65625
 0.58843106 = (MATCH) fieldWeight(description:salesman in 57),
 product of:
 1.0 = tf(termFreq(description:salesman)=1)
 5.379941 = idf(docFreq=5)
 0.109375 = fieldNorm(field=description, doc=57)

Compare these explanations with the one given in listing 12.2. Notice how the scores
have increased, but all the other calculations have remained the same. How did we
know the scores would increase? The constant value we placed in the normalize
method was higher than the actual idf value of 5, and it is a weight multiplier for
scores in the MyTermScorer class. Since it was larger than the idf value, the scores went
up. What happens if we drop the constant below the idf threshold? Take a look:

score => 0.625
 0.84061575 = (MATCH) fieldWeight(description:salesman in 108),
 product of:

Save the term

Return an instance
of the new weight

384 CHAPTER 12 Document ranking
 1.0 = tf(termFreq(description:salesman)=1)
 5.379941 = idf(docFreq=5)
 0.15625 = fieldNorm(field=description, doc=108)

 score => 0.44194174
 0.5944051 = (MATCH) fieldWeight(description:salesman in 471),
 product of:
 1.4142125 = tf(termFreq(description:salesman)=2)
 5.379941 = idf(docFreq=5)
 0.078125 = fieldNorm(field=description, doc=471)

 score => 0.4375
 0.58843106 = (MATCH) fieldWeight(description:salesman in 57),
 product of:
 1.0 = tf(termFreq(description:salesman)=1)
 5.379941 = idf(docFreq=5)
 0.109375 = fieldNorm(field=description, doc=57)

The scores dropped just as expected. This is not a very useful example. It was
intended to demonstrate how to modify a weight calculation. The idf is different for
every query, so a constant value would quickly become irrelevant. Maybe it should be
changed to idf – 1 or idf + 1.

NOTE Did you notice the Similarity class making its way into the calculation
again? Our former recommendation still holds. Before writing a full
implementation of a Weight class and either extending or writing a new
Query class, examine Similarity and see if what you want to accomplish
can be done solely with it.

We said earlier that we’d hold off implementing our own Scorer class until we
explained some other things, namely the Weight class. As one last example before we
move on to other subject matter, we’re going to do just that, implement a Scorer.

12.3.2 Revisiting the Scorer class

The end is in sight. We have one final matter to take care of before we move on from
scoring. Did you tie B in listing 12.14 to the Scorer class we wrote in listing 12.12?
This is how you employ your own implementation of a Scorer class. All that is neces-
sary is to put your modifications in the MyTermScorer class, as we do in listing 12.15.

 We’ll now implement our Scorer class, but we won’t change the score method;
we’ll change the constructor to fill the scoreCACHE by multiplying the weightValue by
a constant 1.0, as follows in listing 12.15.

 MyTermScorer(Weight weight, TermDocs td, Similarity
 similarity, byte[] norms) {
 super(similarity);
 this.weight = weight;
 this.termDocs = td;
 this.norms = norms;
 this.weightValue = weight.getValue();

Listing 12.15 Changing the scorer constructor to multiply by a constant tf

385Scoring things my way
 for (int i = 0; i < SCORE_CACHE_SIZE; i++)
 scoreCache[i] = 1.0 * weightValue;
 }

The MyTermQuery class’s normalize method returned to using the idf value instead of
the constant 6, so we’ll see the effect of changing only the scorer constructor.

 The top four document explanations then become these:

 score => 0.84061575
 0.84061575 = (MATCH) fieldWeight(description:salesman in 108),
 product of:
 1.0 = tf(termFreq(description:salesman)=1)
 5.379941 = idf(docFreq=5)
 0.15625 = fieldNorm(field=description, doc=108)

 score => 0.58843106
 0.58843106 = (MATCH) fieldWeight(description:salesman in 57),
 product of:
 1.0 = tf(termFreq(description:salesman)=1)
 5.379941 = idf(docFreq=5)
 0.109375 = fieldNorm(field=description, doc=57)

 score => 0.42030787
 0.42030787 = (MATCH) fieldWeight(description:salesman in 217),
 product of:
 1.0 = tf(termFreq(description:salesman)=1)
 5.379941 = idf(docFreq=5)
 0.078125 = fieldNorm(field=description, doc=217)

 score => 0.42030787
 0.5944051 = (MATCH) fieldWeight(description:salesman in 471),
 product of:
 1.4142125 = tf(termFreq(description:salesman)=2)
 5.379941 = idf(docFreq=5)
 0.078125 = fieldNorm(field=description, doc=471)

Now compare this with listing 12.5. They are identical! How did this happen? By
changing the constructor to multiply by a constant 1.0, we, in effect, said that we don’t
care about term frequency. If a document contains the term, report it. Is that not
exactly what we did in listing 12.4 when we changed the DefaultSimilarity’s term
frequency? Rather than do that, we extended the Query class, wrote our own Weight
class, then wrote our own scorer. Hopefully this demonstrates that things can be
made simpler. Don’t do more work than you have to!

12.3.3 Is it worth it?

At the beginning of this chapter we asked a series of questions about the scoring of
documents and how we could possibly manipulate the scoring, if at all. The last ques-
tion in that group was, “Is it worth it to change this scoring mechanism?” To para-
phrase one of the core Lucene developers, Lucene’s scoring works well right out of
the box.

 At the same time, Lucene is definitely not all things to all people. Some people are
never satisfied. We believe the answer to this question is the same ubiquitous answer

Multiplying by a
constant tf value

386 CHAPTER 12 Document ranking
that is given to most questions concerning anything to do with computers and data: “It
depends.” If you feel the need to tweak the way your application scores data, then by
all means do it. Just be smart about it.

 It’s time to move on. We’ve covered quite an assortment of topics up to this point,
but we briefly mentioned one essential topic and then seem to have forgotten it. That
topic is the relevancy of documents returned from searches. After all, what use are doc-
uments concerning the USS Kitty Hawk if they were returned in answer to a query per-
taining to the details of the Wright brothers’ first flight? Let’s take a look at document
relevance.

12.4 Document relevance
Lucene and therefore Hibernate Search focus strictly on what are known as ad hoc
queries. That is, they provide responses to user-supplied queries. The problem with
relevance is that it is subjective. What may be judged relevant by one person might not
be judged relevant by another. Taking our query about the Wright brothers as an
example, one person may say that the aircraft carrier document is relevant because it
was named after the location of the Wright brothers’ first powered flight, and that per-
son was wondering if any U.S. Navy ships had been named after historical events.
Another person may say it is completely irrelevant because it has nothing to do with
how many flights took place on December 17, 1903, or what the flight distances were.
It depends on what information the user is looking for.

 One would think that in this day and age Google would have solved the relevancy
problem, but effectiveness measurements have not been made available even by
Google itself. According to the Text Retrieval Conference (TREC), as of 2003 search
accuracy is, at best, in the 40 percent range.

 How can a subjective topic like relevance be measured in scientific terms? That’s
what we’ll discuss next. Experimentation has identified some fairly simple formulas
for two quantities: Precision and Recall. The formulas are simple, but manipulating the
underlying framework they represent is not.

12.4.1 Understanding Precision vs. Recall

Relevance theory identifies and uti-
lizes two terms: Precision and Recall.
These terms are defined by comparing
a query’s returned documents with
that portion of those documents that
are judged relevant. See figure 12.3.

 Relating to the quantities in
figure 12.2, Recall is defined in equa-
tion 12.34 as the ratio of relevant
retrieved documents to the total num-
ber of relevant documents in the repository.

Relevant
Documents

Retrieved
Documents

Figure 12.3 The relationship between relevant
documents and all retrieved documents. Not all
retrieved documents are relevant, and not all relevant
documents are retrieved.

387Document relevance

Precision is defined in equation 12.35 as the ratio of the number of relevant retrieved
documents to the total number of documents retrieved.

Notice that the size of the document repository has no bearing. We’re concerned
solely with the ratios of returned and relevant documents.

 Applying these concepts to fig-
ure 12.3 yields updated figure 12.4.

 From the Precision equation
you can see that increasing the
number of relevant returned docu-
ments while keeping the total num-
ber retrieved constant increases the
Precision proportionally. Can these
values be accurately measured? If
so, how do we go about it? That is
our next topic.

12.4.2 Measuring a system’s relevance accurately

How do we go about quantifying how accurate the relevance of a system actually is? As
we mentioned, judging search quality is subjective and difficult. Judging the quality of
any intricate task can become very labor intensive. To determine accurate relevance of
a search system like Lucene, three items are necessary:

■ A standard collection of documents Standard document repositories are available
free on the internet. As you would expect, non-free ones are available also. One
of the free ones is the JRC-ACQUIS Multilingual Parallel Corpus located at
http://wt.jrc.it/lt/Acquis/. This corpus is available in 23 different languages.
TREC also has repositories available with links on its internet site, but these are
not free.

■ A set of standard queries Queries against repositories are also available on TREC,
and these are free. You can also develop your own.

■ A set of relevance judgments This is where the hard labor comes in. You need to
specify which of the documents in the corpus are relevant to which standard
query across the entire repository! TREC offers sets of free relevance judgments and
the C source code for a program to aid in determining relevance called
trec_eval_latest.tar.gz. Even though you may have to purchase the corpus, the

Equation 12.34 Formula used to calculate Recall

Equation 12.35 Formula used to measure Precision

Relevant
Documents

Retrieved
Documents

High
Precision

High Recall

Figure 12.4 High Precision requires returned
documents to be relevant; high Recall is concerned only
with retrieval.

http://wt.jrc.it/lt/Acquis/

388 CHAPTER 12 Document ranking
cost saved by the free queries and relevance judgments may make it worthwhile
for you.

NOTE The above bullet points are paraphrased from a presentation given by
Grant Ingersoll at ApacheCon 2007. Although this information is quite
similar to that given on the TREC website, we want to make sure to recog-
nize him.

Lucene includes utility classes in the contribution package, which we’ll be discussing
in chapter 13, to utilize TREC information to judge system relevance. You could utilize
this to help with generating queries for your application. The benchmark tools are
located at lucene_install_directory/contrib/benchmark. You’ll have to unjar the docu-
mentation in the lucene-benchmark-javadoc.jar file. Once you have this uncom-
pressed, start by reading the org.apache.lucene.benchmark.quality package file. It
contains a complete example of how to quantify search quality. A discussion of these
utilities was absent in the first edition of Lucene in Action but is included as one of the
appendixes in the second edition due out in March 2009.

 Information retrieval systems are optimized quantitatively by continuously measur-
ing the effect of system changes through the previous procedures. Once this process is
completed, you might ask whether there is any other way that relevant document fre-
quency can be enhanced while still keeping the retrieved document count constant.
The document feedback process was formulated to help answer this problem. Basi-
cally, it allows the user to determine what is relevant and what is not. Let’s examine
that process now.

12.4.3 Document feedback: tell me what you want!

The process of increasing the relevance of returned documents is known as relevance
or document feedback. This methodology, available since the 1960s, assumes that
since users usually know little about the details of a particular document repository’s
makeup, they have difficulty assembling an initial query that produces the results
they’re looking for.

 Think about it. When you call up your favorite search engine in your browser to
search for a topic, do you really have any idea what’s on the web?

 Because of this user-repository mismatch, the initial query should be treated as only
a preliminary step in obtaining useful information. The user can then examine the
results of this first-round query. Terms from documents that are judged relevant can
then be reformulated and applied to new, additional queries, thereby increasing the
relevance of the newly returned documents. At the same time, terms in documents
considered less relevant can be downplayed in the new queries. The effect of this pro-
cess after several iterations is to cause more relevant documents to be returned.

 An alternative to this manual intervention is known as pseudo or blind relevance
feedback. This method does normal retrieval to find an initial set of documents and
automatically considers a subset of a certain number of the top documents returned

389Document relevance
as relevant. Let’s say that the top four returned documents in each query round are to
be considered relevant documents. The top three terms from each of these docu-
ments are to be utilized in the additional queries, and this entire process is to be
repeated for a certain number of iterations. At the end of these iterations, the results
should be sufficient for the user.

 Lucene is capable of emulating this process. Through the use of term vectors, a
developer can examine individual terms in documents returned from a query and
develop a framework to query for more documents that contain those terms.

 Term vectors are collections of term-frequency pairs. To utilize term vectors, you
must enable them during indexing so they are stored with documents. To enable
them, the org.apache.lucene.document.Field class has several overloaded construc-
tors that turn on the storage of term vectors:

■ Field(String name, Reader reader, Field.TermVector termVector)
■ Field(String name, String value, Field.Store store, Field.Index

index, Field.TermVector termVector)
■ Field(String name, TokenStream tokenStream, Field.TermVector

termVector)

The org.apache.lucene.document.Field.TermVector class contains the five static
values that termVector can have in these methods. These values are given in table 12.4.

Notice that in addition to being able to store term frequency counts, it is also possible
to store a term’s position information and offset information. We’ll talk about these
shortly.

 Let’s look at what term vectors can do for us, by examining the additional informa-
tion we can retrieve from a result. The code in listing 12.16 shows not only the annota-
tion declaration inside the ElectricalProperties class but also the code that builds
the index consisting of ElectricalProperties documents.

Table 12.4 The Field.TermVector values and their definition

Value Definition

Field.TermVector.YES Store the term vectors of each document.

Field.TermVector.NO Do not store term vectors.

Field.TermVector.WITH_OFFSETS Store the term vector plus token offset
information.

Field.TermVector.WITH_POSITIONS Store the term vector plus token position
information.

Field.TermVector.WITH_POSITIONS_OFFSETS Store the term vector plus token position
and offset information.

390 CHAPTER 12 Document ranking

 @Field(index = Index.TOKENIZED,
 store = Store.YES,
 termVector = TermVector.WITH_POSITION_OFFSETS)

 private void buildIndex() throws Exception
 {
 tx = session.beginTransaction();

 ElectricalProperties ep =
 new ElectricalProperties();
 ep.setContent("Electrical Engineers measure
 ➥Electrical Properties");
 session.save(ep);

 ep = new ElectricalProperties();
 ep.setContent("Electrical Properties are
 ➥interesting");
 session.save(ep);

 ep = new ElectricalProperties();
 ep.setContent("Electrical Properties are
 ➥measurable properties");
 session.save(ep);

 tx.commit();
 session.clear();
 }

After the index is built, the code in listing 12.17 can be executed. This queries the
index for the term properties. The query results broken down by terms per result docu-
ment are then given.

@Test
public void vectorTest() throws Exception {
 FullTextSession session =
 Search.getFullTextSession(openSession());
 Transaction tx = session.beginTransaction();
 buildIndex();

 try {
 Query query =
 new TermQuery(new Term("content", "properties"));
 System.out.println(query.toString());

 FullTextQuery hibQuery =
 session.createFullTextQuery(query,
 ElectricalProperties.class);

 hibQuery.setProjection(FullTextQuery.DOCUMENT,
 FullTextQuery.DOCUMENT_ID,
 FullTextQuery.SCORE);
 reader = getReader(session);

Listing 12.16 Declaring term vector information and building a simple index with it

Listing 12.17 Printing the TermFreqVector and position results of query

Include
TermVector
information

Build the
index entries

Retrieve the
DOCUMENT_ID

B

391Document relevance
 List<Object[]> results = hibQuery.list();

 assert results.size() > 0: "no results returned";
 for (int x = 0; x < results.size(); x++) {

 Integer docId = (Integer)results.get(x)[1];

 TermPositionVector vector =
 (TermPositionVector)reader
 .getTermFreqVector(docId, "content");
 String[] terms = vector.getTerms();
 int[] f = vector.getTermFrequencies();

 System.out.println(results.get(x)[2]);

 for (int y = 0; y < vector.size(); y++) {
 System.out.print("docID# =>" + docId);
 System.out.print(" term => " + terms[y]);
 System.out.print(" freq => " + f[y]);

 int[] positions = vector.getTermPositions(y);
 TermVectorOffsetInfo[] offsets =
 vector.getOffsets(y);
 for (int z = 0; z < positions.length; z++) {
 System.out.print(" position => "
 + positions[z]);
 System.out.print(" starting offset => "
 + offsets[z].getStartOffset());
 System.out.println(" ending offset => "
 + offsets[z].getEndOffset());
 }
 System.out.println("---------------");
 }
 }
 tx.commit();
 }
 finally {
 session.close();
 if (provider != null) {
 provider.closeReader(reader);
 }
 }
}

private IndexReader getReader(FullTextSession session) {
 SearchFactory searchFactory = session.getSearchFactory();
 DirectoryProvider dirProvider =
 searchFactory.getDirectoryProviders(
 ElectricalProperties.class)[0];
 provider = searchFactory.getReaderProvider();
 return provider.openReader(dirProvider);
}

In this example we must set a projection on the query B so that we can retrieve the
Lucene document id number at C. We need this number to access the term informa-
tion. D retrieves the TermPositionVector for a single document field, utilizing an
IndexReader and the document id number we just retrieved.

Get the Lucene
document number

C

Get a document’s
TermPositionVector

D

Show the document scoreE

Retrieve the arrays of
terms and frequencies

F

Retrieve the
arrays of
positions and
offsets

G

392 CHAPTER 12 Document ranking
WARNING If your index is built with Field.TermVector.NO, this code snippet will
fail with a NullPointerException. The explicit cast to a TermPosi-
tionVector can be done only when position information is available.
This information is available only when the index is built with one of
the last three Field.TermVector values listed in table 12.4. As is,
vector will be null.

In cases where Field.TermVector.YES is used to build the index,
then B should read as TermFreqVector vector = reader.getTerm-
FreqVector(x, "content");.

We show the result item score E to verify the correct order of returned documents.
F retrieves a document field’s terms as a string array and their frequencies also as an
array. These arrays have one-to-one correspondence; that is, in our example terms[3]
would return a particular term and freqs[3] would return that term’s frequency.

 G retrieves the term’s position and offset information. These two arrays also have
one-to-one correspondence the same way the term and frequency arrays do.

 Listing 12.18 shows the results of our query. Notice first that because of document
ranking, the document order is not the same as when we entered them in the index.
Second, notice that freq displays a count of each term in its document. You can com-
pare this to what was entered in listing 12.16 and see that the frequencies do match.
Also, for those terms with a frequency count of more than 1, multiple positions and
offsets are listed.

 Position and offset information starts at 0, so let’s interpret the first term of the
document with a docId of 0. This is the seventh term described in listing 12.18.

■ The term electrical occurs in document 0 twice.
freq => 2

■ It occurs at the first (0) and the fourth (3) positions.
position => 0 and position => 3

■ The first occurrence starts at character offset 0 of the content field.
starting offset => 0

■ The second occurrence starts at character offset 29 (30th character) of the con-
tent field.

starting offset => 29

0.5036848
docID# =>2 term => electrical freq => 1 position => 0
starting offset => 0 ending offset => 10

docID# =>2 term => measurable freq => 1 position => 2
starting offset => 26 ending offset => 36

docID# =>2 term => properties freq => 2 position => 1
starting offset => 11 ending offset => 21
 position => 3 starting offset => 37 ending offset => 47

Listing 12.18 The term frequency and position results of the query in listing 12.17

393Document relevance

0.35615897
docID# =>1 term => electrical freq => 1 position => 0
starting offset => 0 ending offset => 10

docID# =>1 term => interesting freq => 1 position => 2
starting offset => 26 ending offset => 37

docID# =>1 term => properties freq => 1 position => 1
starting offset => 11 ending offset => 21

0.3116391
docID# =>0 term => electrical freq => 2 position => 0
starting offset => 0 ending offset => 10
 position => 3 starting offset => 29 ending offset => 39

docID# =>0 term => engineers freq => 1 position => 1
starting offset => 11 ending offset => 20

docID# =>0 term => measure freq => 1 position => 2
starting offset => 21 ending offset => 28

docID# =>0 term => properties freq => 1 position => 4
starting offset => 40 ending offset => 50

This data is easy to retrieve, but what does this additional information do for us? It
adds a lot of sophistication to queries. Let’s say that you’d like to change the format-
ting (boldface, color highlighting, and so forth) on the queried terms where they
appear in the returned documents. Knowing the position of a specific term would
allow us to manipulate these terms in this manner. We’ll be discussing this in
chapter 13 and present a full example.

 Let’s get back to relevancy. What if we took the three most frequent terms and
used them in another query? Then we took the three most frequent terms from that
query. Does this sound familiar? There’s a lot you can do with this information. Hav-
ing this data at your disposal allows you the freedom to create applications that help
with relevancy issues and with a little ingenuity provide the document feedback we’re
discussing.

 Rather than your going to all this trouble, though, Lucene comes with a contrib-
uted class that performs a bit of this manipulation for you. This class is MoreLikeThis.
You could use it as a launchpad for your code or as is.

 This class comes with an opening comment, which is a portion of an email written
by one of the Lucene developers concerning best practices in these circumstances. We
suggest you read it because it contains good information. Let’s take a quick look at
this class now.

12.4.4 Improving relevance with MoreLikeThis

Among the contributions to Lucene that were once part of the sandbox (you’ll learn
more about this in chapter 13) and are now part of the core package is the

394 CHAPTER 12 Document ranking
org.apache.lucene.search.similar.MoreLikeThis class, which was designed to
help in the relevancy process.

WARNING We want you to understand that this is not the easiest class to obtain
accurate results with. It contains many variables where small changes
in their values can have drastic effects on results. That being said,
you’ll have to realize that much experimentation with this class will be
necessary to obtain results close to what you expect them to be for a
given document corpus.

The MoreLikeThis API documentation is available at /docs/api/org/apache/
Lucene/search/similar/MoreLikeThis.html. If you download and unpack the Lucene
distribution, you’ll find that it is packaged in the source code at /contrib/queries/
src/java/org/apache/lucene/search/similar/MoreLikeThis.java. A precompiled ver-
sion is located in /contrib/queries/lucene-queries.jar.

 The MoreLikeThis class sprang from an email by Doug Cutting, who is one of the
principal Lucene committers. This email is included in the Javadoc API for the class. A
summary of the email follows.

 Lucene allows retrieval of a term’s document frequency through IndexReader
.docFreq(Term term)and term frequencies by counting a document’s tokens. The
problem is that document frequency calculation for every term in a document would
be very slow. Heuristics can improve this speed problem by making approximations.

 Assuming that you want a maximum tf * idf value, two heuristics could improve
search speed:

■ Choose a low tf threshold (2 or 3). Terms with lower frequencies will be ignored in
the source document.

■ Threshold the terms by their number of characters, say, 6 or 7. Terms with a high idf
(that is, a low document frequency) tend to be longer.

These heuristics should allow for a small list of, for example, 10 terms to be generated
that do a decent job of identifying a document.

 What this all means is that we should be able to:

1 Take a document that results from a query.
2 Analyze it by applying various metrics to its terms.
3 Extract terms via the analysis that represent the documents.
4 Utilize these terms to search for additional documents that are more like these

terms.

For example, let’s say that we were searching a document repository for the term Kitty
Hawk, and the first three results returned are:

1 Located on the Outer Banks of North Carolina, the town of Kitty Hawk offers
year-round residents and visitors alike a unique and relaxing environment.

395Document relevance
2 The USS Kitty Hawk is the first in a class of three supercarriers constructed by
the New York Shipbuilding Corporation at Camden, New Jersey.

3 Kitty Hawk Kites, Inc. was founded in 1974 by John Harris, a pioneer in hang
gliding, to provide instruction, products, and service to the burgeoning new
sport.

That’s a wide variety of results, but we spot the information we’re looking for in item
2. Now we should be able to take the result, extract pertinent terms from it, and
search again utilizing these terms. This process could be repeated several times. We
would utilize the heuristics described in the previously mentioned email to help us
determine the relevant terms in our chosen search result. Hopefully, by now you
have realized that this is one implementation of document feedback utilized to
improve relevancy.

 The MoreLikeThis class allows us to employ these heuristics programmatically
through the included methods:

■ setAnalyzer(Analyzer analyzer)
■ setMinTermFreq(int minTermFreq)
■ setMinDocFreq(int minDocFreq)
■ setMinWordLen(int minWordLen)
■ setMaxWordLen(int maxWordLen)
■ setMaxQueryTerms(int maxQueryTerms)
■ setMaxNumTokensParsed()
■ setStopWords(Set stopWords)
■ setFieldNames(String[] fieldNames)

All of these heuristic variables have default values, which are listed in table 12.5 along
with an explanation of each of the quantities.

Table 12.5 Default values of MoreLikeThis heuristic variables and their meanings

Variable name Default value Setter method

DEFAULT_ANALYZER StandardAnalyzer Analyzer to use when querying.

DEFAULT_MIN_TERM_FREQ 2 Ignore words less frequent than this in the
like document.

DEFAULT_MIN_DOC_FREQ 5 Ignore words that do not occur in at least
this many documents.

DEFAULT_MIN_WORD_LENGTH 0 Ignore words in the like document if less
than this length. If zero, this has no effect.

DEFAULT_MAX_WORD_LENGTH 0 Ignore words in the like document if longer
than this length. If zero, this has no effect.

DEFAULT_MAX_QUERY_TERMS 25 Return a query with no more than this many
terms.

DEFAULT_MAX_NUM_
TOKENS_PARSED

5000 Maximum number of tokens to parse in each
doc field.

396 CHAPTER 12 Document ranking
Looking at these default values, you can see that you will want to change some of them
when using the MoreLikeThis class in your own code. As it is, word length has no
effect, and as discussed in the email, different values of these quantities can dramati-
cally affect results.

 Let’s look at an example of the MoreLikeThisQuery class in action. Listing 12.19
demonstrates its use. We will again utilize the query.toString() method to show the
terms that are extracted from our document and utilized in the additional searches,
because this is the crux of the entire process.

public class TestMoreLikeThis extends SearchTestCase {
 public List<Object[]> results;
 private FullTextSession session;
 private IndexReader reader;
 private ReaderProvider readerProvider;

 String likeText =
 "Keanu Reeves is completely wooden in this
 ➥romantic misfire. Reeves plays a traveling
 ➥salesman and agrees to help a woman"
 String[] moreLikeFields = new String[]{"description"};

 public void testMoreLikeThis() throws Exception {
 session = Search.createFullTextSession(openSession());
 Transaction tx = session.beginTransaction();

 StringReader sr = new StringReader(likeText);
 reader = getReader();

 try {
 MoreLikeThis mlt = new MoreLikeThis(reader);
 mlt.setFieldNames(moreLikeFields);
 mlt.setMaxQueryTerms(2);
 mlt.setMinDocFreq(1);
 mlt.setAnalyzer(new StandardAnalyzer());
 mlt.setMaxWordLen(8);
 mlt.setMinWordLen(7);
 mlt.setMinTermFreq(1);

 Query query = mlt.like(sr);
 System.out.println(query.toString());

 org.hibernate.search.FullTextQuery hibQuery =
 session.createFullTextQuery(query,

DEFAULT_STOP_WORDS null Default set of stop words. Null means to
allow stop words.

DEFAULT_FIELD_NAMES new String[] { "contents"} Field name(s) of like document to examine.

Listing 12.19 Utilizing the MoreLikeThisQuery to obtain additional documents

Table 12.5 Default values of MoreLikeThis heuristic variables and their meanings (continued)

Variable name Default value Setter method

Define the like
document

B

Create a Reader for
the document

C

Create and fill the
MoreLikeThis class

D

Call the
like(Reader)
method

E

397Document relevance
 Product.class);
 hibQuery.setProjection(FullTextQuery.DOCUMENT,
 FullTextQuery.SCORE,
 FullTextQuery.DOCUMENT_ID);

 results = hibQuery.list();

 assert results.size() == 6:"incorrect result count";

 for (Object[] result : results) {
 Document doc = (Document) result[0];
 assertTrue(doc.get("description").indexOf(
 ➥"salesman") > 0 || doc.get("description").indexOf(
 ➥"misfire") > 0);
 }
 tx.commit();
 }
 finally {
 session.close();
 }
 }

 private IndexReader getReader() {
 SearchFactory searchFactory = session.getSearchFactory();
 DirectoryProvider provider =
 searchFactory.getDirectoryProviders(Product.class)[0];
 readerProvider =
 searchFactory.getReaderProvider();
 return readerProvider.openReader(provider);
 }
}

The like document B is defined. As we discussed, this could be obtained in a number
of ways, especially from a prior query. Once we have this defined, we feed it to a
StringReader C in preparation for having the MoreLikeThis class analyze it. We
instantiate the MoreLikeThis class D and set the parameters we want the class to use
to extract the terms from the like document. The query is returned after calling the
MoreLikeThis.like(Reader) method E. In this example the generated query is

description:misfire description:salesman

Executing this query should produce six results F, and each of them should contain
either misfire or salesman G.

 Now that we have seen our first example, let’s change a couple of the variables and
see what effect they have on results. Leaving DEFAULT_MIN_WORD_LENGTH and DEFAULT_
MAX_WORD_LENGTH set to their default values of 0 and DEFAULT_MAX_QUERY_ TERMS to
its default value of 25 produces 154 results. The query has now become

description:reeves description:wooden description:misfire
description:traveling description:agrees description:completely
description:salesman description:keanu description:help description:woman
description:romantic description:plays

Use projection since
there is no DB

Confirm six
results

F

Confirm salesman
or misfire in all
results

G

398 CHAPTER 12 Document ranking
It should be pretty clear after this single experiment how drastically the parameters
affect results. It should also be clear that a lot of experimentation with your repository
and the MoreLikeThis class will be necessary for you to achieve the results you desire.

12.5 Summary
You have seen that scoring is not an easy topic. Lucene utilizes Boolean-style queries,
but a modified vector space model is its heart and soul. You saw how Lucene exposes
several classes concerned with the scoring process. DefaultSimilarity, Similarity,
Weight, and Scorer provide ways to adjust scoring any way the developer could want.
You also saw that it is possible to avoid a lot of work if you take a critical look at what
you are trying to accomplish and do a little planning before you jump headlong into
generating code. It is not always necessary to develop your own implementations of all
of the classes related to scoring. Armed with what you know now, it is quite often pos-
sible to cope with a given situation by implementing just one of them, Similarity.

NOTE Lucene contains the org.apache.lucene.search.function package,
which contains classes that allow you to modify scoring. Be warned,
though, that all of these classes are, as of version 2.3.1, experimental, and
there is no guarantee of what will happen with them in the future. The
Lucene documentation itself has the following disclaimer on classes in
this package:

WARNING The status of the search.function package is experimental. The APIs
introduced here might change in the future and will not be supported
anymore in such a case.

Another important concern exists, which is the issue of document relevancy. The
problem with relevance is that it is subjective. To counteract this, the somewhat mea-
surable quantities Precision and Recall have been instituted, and to improve the ratio
between these two quantities the concept of relevance feedback has been introduced.
Relevance feedback utilizes several of the top-scoring results of a query to generate
additional queries and thereby over several iterations improve the results. An aid to
the process of improving relevance by utilizing relevance feedback principles is the
MoreLikeThis class provided in the Lucene contributions. By changing various
parameters of this class, it is possible to obtain additional documents related to a sam-
ple document.

 In the next chapter we’re going to look at a range of seemingly unrelated topics.
The Lucene website maintains two separate repositories of code donated by develop-
ers, Contributions and the Lucene Sandbox. The Contributions repository contains
unsupported code for your use, and the Sandbox contains supported code from the
Lucene committers. We’ll examine some of the available software in each of these
repositories in turn.

Don’t reinvent the wheel
In this final chapter we’re going to look at some of the non-core contributions to
Lucene made by developers and interested parties who want to see additional func-
tionality in the product. The authors almost guarantee that one of these libraries
will save you time and work in one of your projects.

 The Apache Lucene website maintains links to a Lucene Sandbox of contribu-
tions that are free to use (within licensing restrictions), open source offerings at
http://lucene.apache.org/java/docs/lucene-sandbox/index.html, and third-party
contributions at http://lucene.apache.org/java/docs/contributions.html, not all
of which are open source or free. Some open source libraries not mentioned on
the Lucene website can also help out tremendously depending on the situation.
We’ll be discussing one of these. You’ve used several of these contributions before.

This chapter covers
■ Term highlighters
■ The BoostingQuery class
■ Synonym generation and regex queries
■ Extracting and indexing text from different

file formats
399

file:///D:\java\Projects\lucene-2.3.1\contrib\spellchecker\org\apache\lucene\search\spell\SpellChecker.html#indexDictionary%28org.apache.lucene.search.spell.Dictionary%29
file:///D:\java\Projects\lucene-2.3.1\contrib\spellchecker\org\apache\lucene\search\spell\SpellChecker.html#indexDictionary%28org.apache.lucene.search.spell.Dictionary%29
file:///D:\java\Projects\lucene-2.3.1\contrib\spellchecker\org\apache\lucene\search\spell\SpellChecker.html#indexDictionary%28org.apache.lucene.search.spell.Dictionary%29
file:///D:\java\Projects\lucene-2.3.1\contrib\spellchecker\org\apache\lucene\search\spell\Dictionary.html
file:///D:\java\Projects\lucene-2.3.1\contrib\spellchecker\org\apache\lucene\search\spell\Dictionary.html
http://java.sun.com/j2se/1.4/docs/api/java/lang/String.html
file:///D:\java\Projects\lucene-2.3.1\contrib\spellchecker\org\apache\lucene\search\spell\SpellChecker.html#suggestSimilar%28java.lang.String, int%29
http://java.sun.com/j2se/1.4/docs/api/java/lang/String.html
http://java.sun.com/j2se/1.4/docs/api/java/lang/String.html
http://java.sun.com/j2se/1.4/docs/api/java/lang/String.html
file:///D:\java\Projects\lucene-2.3.1\contrib\spellchecker\org\apache\lucene\search\spell\SpellChecker.html#suggestSimilar%28java.lang.String, int, org.apache.lucene.index.IndexReader, java.lang.String, boolean%29
http://java.sun.com/j2se/1.4/docs/api/java/lang/String.html

400 CHAPTER 13 Don’t reinvent the wheel
Remember the MoreLikeThis class in chapter 12? In addition, you’ve been using the
index examiner application Luke throughout this book, and we’ll continue to use it in
this chapter.

 Although we are by no means going to discuss all the libraries and applications
available on the Lucene site, we will cover examples of a varied nature to give you a
feel for what you will find there. It’s not necessary to read this chapter in the order in
which it’s presented. Feel free to jump directly to any topic of interest and start there.

 We’ll get started with the Lucene Sandbox and its collection of utility classes. After
a section that mainly deals with extracting text from various document formats such as
Adobe Systems PDF files and Microsoft documents and finishes with extracting text
from a simple text file, we’ll go over the contributions.

13.1 Playing in the Sandbox
The Sandbox is located at http://lucene.apache.org/java/docs/lucene-sandbox/
index.html, and the accompanying code repository is located at http://
svn.apache.org/repos/asf/lucene/java/trunk/contrib/. It deals with code donated
by the core developers along with others interested in the Lucene project. The code is
not actively maintained, so you may have to experiment with it.

 In addition to the items we will be talking about, the Sandbox contains such things
as a large quantity of analyzers, tokenizers, and filters for many different languages.
Also, it contains an ANT task that creates a Lucene index from the files specified by an
ANT fileset.

NOTE As of this writing, the fate of the Sandbox is up in the air. The authors
were informed that it is no longer being maintained, and some of the
classes there have been adopted into the Lucene core. We’re going to
discuss two of them—BoostingQuery and RegexQuery. We still consider
these two classes important to discuss so that you can see their inner
workings and possibly adapt them to your own code if needed. Besides,
that’s what the Sandbox is for.

After looking at a term highlighter, we will revisit a topic discussed in chapter 12, scor-
ing and the BoostingQuery. Depending on the circumstances, this utility class may
save you a lot of work. The last parts of this section, before we move on to the contri-
butions, will cover various types of query classes such as synonym and regular expres-
sion (regex) queries.

13.1.1 Making results stand out with the term Highlighter class

The first set of classes we’ll examine allows us to change the output format of the
terms that match our queries. The Lucene source code contains these classes and is
located at lucene_install_directory/contrib/highlighter/src/java/org/apache/lucene
/search/highlight. These classes are also included in a precompiled .jar file, lucene-
highlighter, located at lucene_install_directory/contrib/highlighter, which needs to
be placed in your classpath.

http://lucene.apache.org/java/docs/lucene-sandbox/index.html
http://java.sun.com/j2se/1.4/docs/api/java/lang/String.html
file:///D:\java\Projects\lucene-2.3.1\contrib\org\apache\lucene\index\IndexReader.html
http://java.sun.com/j2se/1.4/docs/api/java/lang/String.html
http://java.sun.com/j2se/1.4/docs/api/java/lang/String.html

401Playing in the Sandbox
 In the following example and in several of the remaining examples in this chapter,
we’ll make use of the Dvd class. This simple class is shown here, and it will allow us to
demonstrate the points we’re trying to make without overly complicating matters.

@Entity
@Indexed
@Analyzer(impl = StandardAnalyzer.class)
public class Dvd {
 private Integer id;
 private String title;
 private String description;

 @Id
 @DocumentId
 public Integer getId() {
 return id;
 }

 public void setId(Integer id) {
 this.id = id;
 }

 @Field(index = Index.TOKENIZED, store = Store.YES)
 public String getTitle() {
 return title;
 }

 public void setTitle(String title) {
 this.title = title;
 }

 @Field(index = Index.TOKENIZED, store = Store.YES)
 public String getDescription() {
 return description;
 }

 public void setDescription(String description) {
 this.description = description;
 }
}

Listing 13.1 demonstrates how to use the highlighter classes to make the query-match-
ing terms conspicuous.

public class TestHighlighter extends SearchTestCase {
 private IndexReader reader;
 private Analyzer analyzer = new StandardAnalyzer();
 ReaderProvider readerProvider;

 String desc[] = {
 "Keanu Reeves is completely wooden in this romantic misfire.
➥Reeves plays a traveling salesman and agrees to help a woman",
 "Jamie Lee Curtis finds out that he's not really a salesman
➥and Bill Paxton is a used-car salesman."

Listing 13.1 Using Highlighter to make query result terms more conspicuous

402 CHAPTER 13 Don’t reinvent the wheel
 };

public void testSimpleHighLighter() throws Exception {
 FullTextSession session =
 Search.getFullTextSession(openSession());

 try {
 buildIndex(session);

 Transaction tx = session.beginTransaction();
 QueryParser parser = new QueryParser("description", analyzer);

 Query query = parser.parse("salesman");
 query = query.rewrite(reader);
 org.hibernate.search.FullTextQuery hibQuery =
 session.createFullTextQuery(query, Dvd.class);
 List<Dvd> results = hibQuery.list();

 Highlighter highlighter =
 new Highlighter(new QueryScorer(query));
 highlighter.setTextFragmenter(new SimpleFragmenter(20));

 int maxNumFragmentsRequired = 3;

 for (Dvd p : results) {
 String text = p.getDescription();
 TokenStream tokenStream =
 analyzer.tokenStream(description,
 new StringReader(text));

 String result =
 highlighter.getBestFragments(
 tokenStream, text,
 maxNumFragmentsRequired, " ...");
 assert result != null : "null result";
 assert result.length()>0 : "0 length result";
 System.out.println(result);
 }
 readerProvider.closeReader(reader);
 for (Object element : s.createQuery("from "
 + Dvd.class.getName()).list())
 s.delete(element);

 tx.commit();
 }
 finally {
 s.close();
 }

 private void buildIndex(FullTextSession session)
 throws Exception {
 getReader(session)
 Transaction tx = session.beginTransaction();

 for (int x = 0; x < desc.length; x++) {
 Dvd dvd = new Dvd();
 dvd.setId(x);
 dvd.setDescription(desc[x]);
 session.save(dvd);
 }

Rewrite multiterm queriesB

Create a new
Highlighter

C

Read the hit field
content as a streamD

http://wordnet.princeton.edu/3.0/WNprolog-3.0.tar.gz
http://wordnet.princeton.edu/obtain
http://wordnet.princeton.edu/3.0/WNprolog-3.0.tar.gz

403Playing in the Sandbox
 tx.commit();
 }

 @Override
 protected void tearDown() throws Exception {
 reader.close();
 super.tearDown();
 }

 private void getReader(FullTextSession session) {
 SearchFactory searchFactory = session.getSearchFactory();
 DirectoryProvider provider =
 searchFactory.getDirectoryProviders(Dvd.class)[0];
 readerProvider =
 searchFactory.getReaderProvider();
 reader = readerProvider.openReader(provider);
 }
}

not really a salesman …
➥ is a used-car salesman
 a traveling salesman

B shows that during the search all multiterm queries (prefix, wildcard, range, fuzzy,
and so on) must be rewritten or they won’t work! This takes care of rearranging the
queries behind the scenes. Just remember to do it. C shows the single-parameter
Highlighter constructor that takes a Scorer. If you want to substitute your own For-
matter, you must call one of the other constructors that also takes a Formatter as a
parameter. The loop through the resulting hits D shows that the field to be high-
lighted is read as a stream so that the highlighting code can be inserted where you
want it. Results are shown at E.

 Listing 13.2 shows the default SimpleHTMLFormatter class that comes with High-
lighter. This class controls exactly how the term highlighting should look. It imple-
ments the Formatter interface, which contains the single method signature: String
highlightTerm(String originalText, TokenGroup tokenGroup);. In this signature
tokenGroup contains the token or tokens to be highlighted along with their score,
which will determine whether or not they are highlighted. The highlightTerm
method in listing 13.2 shows an example usage.

public class SimpleHTMLFormatter implements Formatter {
 String preTag;
 String postTag;

 public SimpleHTMLFormatter(String preTag,
 String postTag) {
 this.preTag = preTag;
 this.postTag = postTag;
 }

 public SimpleHTMLFormatter() {
 this.preTag = "";
 this.postTag = "";
 }

Listing 13.2 SimpleHTMLFormatter formats code to highlight matches

ResultsE

Constructor for
insertion of tags

B

Constructor with
predefined tags

C

404 CHAPTER 13 Don’t reinvent the wheel
 public String highlightTerm(String originalText, TokenGroup
tokenGroup) {
 StringBuffer returnBuffer;
 if (tokenGroup.getTotalScore() > 0) {
 returnBuffer = new StringBuffer();
 returnBuffer.append(preTag);
 returnBuffer.append(originalText);
 returnBuffer.append(postTag);
 return returnBuffer.toString();
 }
 return originalText;
 }
}

The default constructor C contains predefined tags. As shown in listings 13.1 and
13.2, the default Formatter class surrounds the matching terms with HTML bold tags.
So how can you modify the highlighting and make matching terms appear the way you
want them? There are three ways to accomplish this. The first and easiest way is to cre-
ate an instance of the SimpleHTMLFormatter class by calling the constructor that takes
two strings B. These two strings are the formatting code placed around the matching
terms by the highlightTerm method.

 If what you want to accomplish is more complicated than that or you want addi-
tional functionality, you can do it the second way. It will be necessary to write your own
Formatter class that’s similar to the SimpleHTMLFormatter in listing 13.2, making sure
that you also implement the Formatter interface by overriding the highlightTerm
method C. This way you can add any functionality you wish E. Another option
would be to extend the SimpleHTMLFormatter class and override the highlightTerm
method D.

 Once you have your Formatter class, you can inject it when creating an instance of
the Highlighter class by calling one of the two constructors that takes a formatter as a
parameter:

■ public Highlighter(Formatter formatter, Scorer fragmentScorer
■ public Highlighter(Formatter formatter, Encoder encoder, Scorer

fragmentScorer)

Let’s move on to scoring, a topic that is probably near and dear to your heart. As we
discussed at length in chapter 12, modifying the way documents are scored can be a
painstaking process. The next utility class can help ease that pain.

13.1.2 Modifying a score the easy way with BoostingQuery

When we utilize a Boolean query to search for multiple terms, the use of the Boolean
keyword NOT eliminates documents containing the NOTed term from the returned
results. If we query our DVD index for all documents containing “spielberg and NOT
war,” we would retrieve movie descriptions of all Steven Spielberg movies except for
those that contained the term war in their description. So, we would not have Saving
Private Ryan and Schindler’s List returned in the query results. What if we wanted these
results returned, but we wanted them demoted to further down in the returned list,

Formatter method to overrideD

Splicing in
formatting tags

E

405Playing in the Sandbox
that is, with a lower score than those documents that did not contain the term war?
Are we out of luck? No; one of the principal committers to the Lucene project, Doug
Cutting, has contributed a class that does exactly that. It demotes documents that con-
tain specific terms.

 If you are only interested in the demoting of results, this class is the somewhat non-
intuitively named BoostingQuery. The source code is located in the lucene_install_
directory/contrib/queries/src/java/org/apache/lucene/search directory. A precom-
piled Lucene-queries .jar file is available and located in the lucene_install_directory/con-
trib/queries/ directory. The basic use of this query type is as follows:

Query query = new BoostingQuery(match, context, 0.2f);

The match contains the required, desirable criteria that select all matching docu-
ments. The context contains the undesirable elements that are used to lessen the
scores of matching documents. Documents matching the context have their score
multiplied by the so-called boost parameter, in this case 0.2f. To achieve a demoting
effect, this should be less than 1.0f.

 Listing 13.3 is the source listing for the BoostingQuery class itself.

public class BoostingQuery extends Query {
 private float boost;
 private Query match;
 private Query context;

 public BoostingQuery(Query match, Query context,
➥float boost) {
 this.match = match;
 this.context = (Query)context.clone();
 this.boost = boost;

 context.setBoost(0.0f);
 }

 public Query rewrite(IndexReader reader) throws IOException {
 BooleanQuery result = new BooleanQuery() {

 public Similarity getSimilarity(Searcher searcher) {
 return new DefaultSimilarity() {

 public float coord(int overlap,
 int maxOverlap) {
 switch (overlap) {
 case 1:
 return 1.0f;
 case 2:
 return boost;
 default:
 return 0.0f;
 }
 }

Listing 13.3 The code for the BoostingQuery class

The amount to boost by
The query to match

Boost value when both clauses match

Ignore context-
only matches

Supply a new
Similarity

B

Refer to section 12.2.1

Matched only
one clause; use
as isCMatched both

clauses; multiply
by boostD

406 CHAPTER 13 Don’t reinvent the wheel
 };
 }
 };

 result.add(match, true, false);
 result.add(context, false, false);

 return result;
 }

 public String toString(String field) {
 return match.toString(field) + "/" + context.toString(field);
 }
}

Remember chapter 12 and overriding the DefaultSimilarity? B shows how Boost-
ingQuery accomplishes its scoring modification. It does the same thing we were doing
in chapter 12. The choice of what score to return, C or D, determines the multiply-
ing factor to use in scoring the results.

 Let’s look at an example of the BoostingQuery class in action and compare the
results obtained from our TestBoostingQuery with those from listing 12.2 using the
explain method.

 Listing 13.4 shows the results of querying for the term salesman.

score => 0.84061575
0.84061575 = (MATCH) fieldWeight(description:salesman in 108), product of:
 1.0 = tf(termFreq(description:salesman)=1)
 5.379941 = idf(docFreq=5, numDocs=479)
 0.15625 = fieldNorm(field=description, doc=108)

score => 0.5944051
0.5944051 = (MATCH) fieldWeight(description:salesman in 471), product of:
 1.4142135 = tf(termFreq(description:salesman)=2)
 5.379941 = idf(docFreq=5, numDocs=479)
 0.078125 = fieldNorm(field=description, doc=471)

score => 0.58843106
0.58843106 = (MATCH) fieldWeight(description:salesman in 57), product of:
 1.0 = tf(termFreq(description:salesman)=1)
 5.379941 = idf(docFreq=5, numDocs=479)
 0.109375 = fieldNorm(field=description, doc=57)

score => 0.42030787
0.42030787 = (MATCH) fieldWeight(description:salesman in 217), product of:
 1.0 = tf(termFreq(description:salesman)=1)
 5.379941 = idf(docFreq=5, numDocs=479)
 0.078125 = fieldNorm(field=description, doc=217)

score => 0.3362463
0.3362463 = (MATCH) fieldWeight(description:salesman in 220), product of:
 1.0 = tf(termFreq(description:salesman)=1)
 5.379941 = idf(docFreq=5, numDocs=479)
 0.0625 = fieldNorm(field=description, doc=220)

Listing 13.4 Results of the explain method when querying for salesman

The target document scoreB

407Playing in the Sandbox
Document 0 B is the DVD description that starts with “Keanu Reeves is completely
wooden…” and is the first one listed simply because it was the first to be indexed. Let’s
say that we want to query for salesman, but we are not interested as much in movies with
Keanu Reeves. In other words, any of the salesman movies that have Keanu Reeves in
them should be moved toward the bottom of the list. Listing 13.5 shows how to accom-
plish this using the BoostingQuery class. It also shows the resulting explain printout.

public class TestBoostingQuery extends SearchTestCase {
 public Searcher searcher;

 public void testBoostingQuery() throws Exception {
 FullTextSession session =
 Search.createFullTextSession(openSession());
 Transaction tx = s.beginTransaction();

 Query positiveQuery =
 new TermQuery(new Term("description",
 "salesman"));
 Query negativeQuery =
 new TermQuery(new Term("description",
 "reeves"));
 Query query = new BoostingQuery(positiveQuery,
 ➥negativeQuery, 0.5f);
 System.out.println(query.toString());

 org.hibernate.search.FullTextQuery hibQuery =
 session.createFullTextQuery(query,
 Product.class);
 hibQuery.setProjection(FullTextQuery.DOCUMENT,
 ➥FullTextQuery.SCORE, FullTextQuery.DOCUMENT_ID);

 try {
 List<Object[]> results = hibQuery.list();

 assert results.size() > 0: "no reults returned";
 IndexSearcher indexSearcher = getSearcher (session);
 for (Object[] result : results) {
 System.out.println("score => " + result[1]);

 System.out.println(indexSearcher.explain(query,
 (Integer) result[2]).toString());
 }
 tx.commit();
 }
 finally {
 session.close();
 }

 private IndexSearcher getSearcher(FullTextSession session) {
 SearchFactory searchFactory = session.getSearchFactory();
 DirectoryProvider provider =
 searchFactory.getDirectoryProviders(Product.class)[0];
 ReaderProvider readerProvider =
 searchFactory.getReaderProvider();

Listing 13.5 Utilizing the BoostingQuery class to demote movies

Positive query
creation

Negative query
creation

BoostingQuery
creation

408 CHAPTER 13 Don’t reinvent the wheel
 IndexReader reader = readerProvider.openReader(provider);

 return new IndexSearcher(reader);
 }
}

score => 0.5944051
0.5944051 = (MATCH) sum of:
 0.5944051 = (MATCH) fieldWeight(description:salesman in 471),
➥ product of:
 1.4142135 = tf(termFreq(description:salesman)=2)
 5.379941 = idf(docFreq=5, numDocs=479)
 0.078125 = fieldNorm(field=description, doc=471)

score => 0.58843106
0.58843106 = (MATCH) sum of:
 0.58843106 = (MATCH) fieldWeight(description:salesman in 57),
➥ product of:
 1.0 = tf(termFreq(description:salesman)=1)
 5.379941 = idf(docFreq=5, numDocs=479)
 0.109375 = fieldNorm(field=description, doc=57)

score => 0.42030787
0.42030787 = (MATCH) product of:
 0.84061575 = (MATCH) sum of:
 0.84061575 = (MATCH) fieldWeight(
description:salesman in 108),
➥ product of:
 1.0 = tf(termFreq(description:salesman)=1)
 5.379941 = idf(docFreq=5, numDocs=479)
 0.15625 = fieldNorm(field=description, doc=108)
 0.0 = (MATCH) weight(description:reeves^0.0 in 108),
➥product of:
 0.0 = queryWeight(description:reeves^0.0), product of:
 0.0 = boost
 5.2257905 = idf(docFreq=6, numDocs=479)
 0.18587564 = queryNorm
 1.1547475 = (MATCH) fieldWeight(
description:reeves in 108),
➥ product of:
 1.4142135 = tf(termFreq(description:reeves)=2)
 5.2257905 = idf(docFreq=6, numDocs=479)
 0.15625 = fieldNorm(field=description, doc=108)
 0.5 = coord(2/2)

score => 0.42030787
0.42030787 = (MATCH) sum of:
 0.42030787 = (MATCH) fieldWeight(description:salesman in 217),
➥ product of:
 1.0 = tf(termFreq(description:salesman)=1)
 5.379941 = idf(docFreq=5, numDocs=479)
 0.078125 = fieldNorm(field=description, doc=217)

You should notice several things about these results:

■ The document containing reeves was indeed moved down the list B, in this case
to the third position. Its score changed from 0.84061575 to 0.42030787 (multiply

Target document moved
to lower scoreB

Match on salesmanC

Match on reevesD

Apply the
boosting factorE

409Playing in the Sandbox
0.42030787 by 2 and see what you come up with—doesn’t multiplying a number
by 0.5 decrease the score by a factor of 2?).

■ The same document matched on two terms, salesman C and reeves D, just as it
should have (positive and negative).

■ The boosting factor was applied. E
■ The score of the other documents remained the same.

The authors hope you realize that if you were to put a value greater than 1.0F in the
BoostingQuery signature, you would cause it to become what it intuitively sounds like
it should be. In this case the terms that match the second query in the signature would
have their score increased, not decreased. Isn’t that what boosting means? Also, when
you use this class, remember that if the multiplying factor causes the raw score to be
greater than 1.0, it will be normalized back to 1.0. In this case the other results’ scores
will also be adjusted.

 The next two sections deal with query-helper classes: synonyms and regular expres-
sion queries. Some people may find that the first one contains difficult-to-understand
concepts, but its implementation is not problematical.

13.1.3 But I was querying for “flick” utilizing a synonym search

WordNet is a product of the Cognitive Science Laboratory of Princeton University,
New Jersey. It is a lexical database of the English language where words have been
grouped into synonyms of distinct concepts. Its homepage is http://wordnet.prince-
ton.edu. This site even has an online page that provides quite a bit of information on
any word you enter. Figure 13.2 shows the results of entering the word romance into
the page.

 To get to the point where you can use WordNet to help with Lucene queries, you’ll
have to take several preliminary steps:

1 Either build the WordNet contribution classes from the source code, which is
located at lucene_install_directory/contrib/wordnet/src/java/org/apache/
lucene/wordnet, or put the precompiled lucene-wordnet .jar file in your
classpath. The .jar is located in the lucene_install_directory/contrib./wordnet/
directory.

2 Download and expand the Prolog version of WordNet 3.0 as WNprolog-
3.0.tar.gz located at http://wordnet.princeton.edu/obtain.

3 Make sure that the WordNet .jar file is in your classpath, and then utilizing the
Syns2Index Java program included in the Lucene WordNet distribution, build
the synonym index as follows:

 java org.apache.lucene.wordnet.Syns2Index wn_s.pl indexLocation

4 wn_s.pl is WordNet’s synonym file located in the WNprolog-3.0.tar.gz file
you downloaded, and indexLocation is where you want Syns2Index to build
the index.

http://wordnet.prince-ton.edu
http://wordnet.prince-ton.edu
http://wordnet.prince-ton.edu
http://wordnet.princeton.edu/obtain

410 CHAPTER 13 Don’t reinvent the wheel
Once you’ve created the synonym file, you’ll be able to use it in your classes to auto-
matically supply synonyms for your queries. Listing 13.6 shows you how to employ this
really handy feature.

public class TestSynonyms extends SearchTestCase {
 String desc[] = {
 "Keanu Reeves is completely wooden in this romantic
➥misfired flick",
 "Reeves plays a traveling salesman and agrees to help
➥a woman",
 "Jamie Lee Curtis finds out that he's not really a used
➥car salesman"
 };

 public void testQuery() throws Exception {
 FullTextSession session =
 Search.getFullTextSession(openSession());
 Transaction tx = session.getTransaction();
 SynonymHelper helper = new SynonymHelper();
 // buildSynonymIndex();

Listing 13.6 Utilizing the SynLookup class to expand a query term with its synonyms

Figure 13.1 A search for the term romance on the WordNet online page showing the results

Build the
synonym index

B

411Playing in the Sandbox
 String query = "movie flick";
 Set<String> q =
 helper.getSynonyms(query,
 session,
 new StandardAnalyzer());
 assert q.contains("film") : "not found";
 assert q.contains("picture") : "not found";

 try {
 buildDvdIndex(session, tx)
 tx = session.beginTransaction();
 query = "automobile";
 Query expandedQuery =
 helper.expandQuery(query,
 session,
 new StandardAnalyzer(),
 description, 1.0F);

 org.hibernate.search.FullTextQuery hibQuery =
 session.createFullTextQuery(expandedQuery, Dvd.class);
 results = hibQuery.list();

 assert results.size() == 1 : "didn't find the synonym";
 assert results.get(0).getDescription()
 .startsWith("Jamie Lee Curtis");
 assert results.get(0).getDescription()
 .indexOf("car") >= 0;

 // uncommenting the following lines will remove all
 // entries in the synonym index and require it to be
 // rebuilt
 // for (Object element : s.createQuery("from "
➥+ Synonym.class.getName()).list()) {
 // session.delete(element);
 tx.commit();
 }
 finally {
 s.close();
 }
 }

 private void buildSynonymIndex(FullTextSession session,
 Transaction tx) throws Exception {
 helper.buildSynonymIndex(session, "wn_s.pl");
 }

 public void buildDvdIndex(FullTextSession session,
 Transaction tx) throws Exception {
 tx = session.beginTransaction();
 for (int x = 0; x < desc.length; x++) {
 Dvd dvd = new Dvd();
 dvd.setDescription(desc[x]);
 dvd.setId(x + 1);
 session.save(dvd);
 }
 tx.commit();
 session.clear();
 }
}

Test the synonym
generation

C

Expand to include
automobile synonyms

D

Test result for
synonym car

E

Delete synonym indexF

Call helper to build
synonym indexG

412 CHAPTER 13 Don’t reinvent the wheel
First and foremost, build the synonym index B. In this code it is commented out, but
you can uncomment it the first time the test is run and use it as you see fit. The index
is deleted at F, which is also commented in this code.

 We’re running two different tests here. The first test C makes certain that syn-
onym generation occurs correctly by querying for the terms flick and movie and ensur-
ing that other synonyms were generated. The actual query terms generated here are
word:movie word:film word:flick word:pic word:picture. Notice that the origi-
nal term is automatically included in the token list. Using q.toString() will show you
the term list.

 The second test D queries our DVD description index for the term automobile. The
query tokens generated for this search are contents:automobile contents:auto

contents:car contents:machine contents:motorcar. Notice that the single hit that
is returned was on the term car. This is a good proof that the synonyms actually work
the way they should. E asserts that the synonym car was found by the query.

 The actual call to the SynonymHelper class to build the index is shown at G.
 For those of you who said it just could not be done, next up is utilizing regular

expressions (regex) in your queries.

13.1.4 Implementing regular expression searches
and querying for “sa.[aeiou]s.*”

Synonyms are all well and good, but they still won’t help with misspellings (this is just
one example of how regex could help). If you were able to use synonyms to help with
queries of commonly misspelled words, it would be possible to obtain results where
you might not otherwise.

NOTE Admittedly this is not the best way to help with misspelled words.
Spellcheckers come to mind first, and the Lucene website offers a
spellchecking contribution. N-grams also come to mind, but they’re
beyond the scope of this book, other than what is discussed in section
5.3.3. If you’re interested in finding out more about them, plenty of doc-
umentation is available on the internet.

Listing 13.7 is a standalone unit test that demonstrates the use of regular expressions
when querying. You will have to put two .jar files in your classpath for this.

■ The lucene-regex .jar located in the lucene_install_directory/contrib/regex
directory

■ The jakarta-regexp .jar located in the lucene_install_directory/contrib/regex/lib
directory

The authors must warn you that not all of the regular expression syntax is completely
supported. So if you’re going to use this in your code, be sure to experiment first to
see what is and what is not supported.

413Playing in the Sandbox

public class TestRegex extends SearchTestCase {
 private FullTextSession s;
 private Transaction tx;
 String texts[] = {
 "Keanu Reeves is completely wooden in this romantic
 ➥misfired flick",
 "Reeves plays a traveling salesman and agrees to help
 ➥ a woman",
 "Jamie Lee Curtis finds out that he's not really a
 ➥salesman"
 };

 public void testRegex1() throws Exception {
 try {
 buildIndex();
 assertEquals(2, regexHitCount("sa.[aeiou]s.*"));
 cleanup();
 finally {
 s.close();
 }
 }

 public void testRegex2() throws Exception {
 try {
 buildIndex();
 assertEquals(0, regexHitCount("sa[aeiou]s.*"));
 cleanup();
 }
 finally {
 s.close();
 }
 }

 public void testSpanRegex1() throws Exception {
 try {
 buildIndex();
 assert spanRegexHitCount("sa.[aeiou]s", "woman", 5, true) == 1;
 ➥ cleanup();
 }
 finally {
 s.close();
 }
 }

 public void testSpanRegex2() throws Exception {
 try {
 buildIndex();
 assert spanRegexHitCount("sa.[aeiou]s", "woman", 1, true) == 0;
 cleanup();
 }
 finally {
 s.close();
 }
 }

Listing 13.7 Using queries to help with misspellings

B
StandardAnalyzer
reduces the slop

414 CHAPTER 13 Don’t reinvent the wheel
 private int regexHitCount(String regex)
 ➥ throws Exception {
 RegexQuery query = new RegexQuery(newTerm(regex));
 query.setRegexImplementation(
 ➥new JakartaRegexpCapabilities());

 org.hibernate.search.FullTextQuery hibQuery =
 s.createFullTextQuery(query, Dvd.class);
 List results = hibQuery.list();
 return results.size();
 }

 private int spanRegexHitCount(String regex1, String regex2,
➥int slop, boolean ordered) throws Exception {
 SpanRegexQuery q1 = new SpanRegexQuery(newTerm(regex1));
 SpanRegexQuery q2 = new SpanRegexQuery(newTerm(regex2));
 SpanNearQuery query =
 new SpanNearQuery(new SpanQuery[]{q1, q2},
 slop, ordered);

 org.hibernate.search.FullTextQuery hibQuery =
 s.createFullTextQuery(query, Dvd.class);
 List results = hibQuery.list();
 return results.size();
 }

 private Term newTerm(String value) {
 return new Term(description, value);
 }

 private void getFullTextSession {
 s = Search.createFullTextSession(openSession());
 tx = s.beginTransaction();

 for (int x = 0; x < texts.length; x++) {
 Dvd dvd = new Dvd();
 dvd.setId(x);
 dvd.setDescription(texts[x]);
 s.save(dvd);
 }
 tx.commit();
 s.clear();
 }
}

The StandardAnalyzer specified in the Dvd class has removed stop words and
reduced the slop distance to 1 B. C creates an instance of RegexQuery for the regu-
lar expression sa[aeiou]s.*. Before performing the query, we set the capabilities D.
RegexQuery comes with two capabilities: JakartaRegexpCapabilities and Java-
UtilsRegexpCapabilities. These determine whether Jakarta regular expressions or
Java’s Utility package regular expressions are used for query expansion.

 Utilizing SpanRegexQuerys E allows you to search for two different terms sepa-
rated by a number of intervening terms. This distance is known as the slop factor F.
You can also specify whether the terms are to be searched for in the order you speci-
fied them with the ordered parameter F.

C Create the
RegexQuery
instance

Set the capabilities
D

ECreate the
SpanRegexQuery

instances

Create the
SpanNearQuery
instancesF

415Playing in the Sandbox
WARNING Be aware of the effects of analyzers like StandardAnalyzer on Span-
RexexQuerys or any analyzer that utilizes stop word lists. These are lists
of common words like the, of, a, an, and so forth. These words are elim-
inated when the index is built and will affect the slop distance. You
may not get the results you expect. This design anomaly has caught
the authors more than once.

Before moving on to third-party contributions, we want to look at one more utility that
can make your life a little easier. Let’s examine what a spellchecker can do for you.

13.1.5 Utilizing a spellchecker

In sections 7.1.4 and 7.4.5 we discussed the FuzzyQuery and the fact that we could uti-
lize it to help us with user-entered misspellings. There is a problem with this. If you’ve
used the FuzzyQuery for this purpose, you probably soon found out that setting the
minimum similarity correctly to get the results you were expecting is a somewhat time-
consuming and tedious process. There is a better and less–time-consuming way to pull
this off, and that is to use a spellchecker on the field or fields you are concerned with.
It just so happens that Lucene includes a spellchecker in the Contributions section.
The spellchecker utility .jar file, lucene-spellchecker.jar, is located in the contrib
directory at lucene-install-directory\contrib\spellchecker.

NOTE Be advised that the spellchecker, as presented, is not the optimal solu-
tion. Because it creates its own index outside the bounds of Hibernate
Search, it is an unmanaged index. You’ll see this in the example code
presented shortly. The authors are working on creating a better solution
for Hibernate Search, and by the time you read this it should be available
for your use.

The spellchecker supports two types of dictionaries:

■ LuceneDictionary A dictionary composed of the key terms taken from a field
or fields of an existing Lucene index.

■ PlainTextDictionary A dictionary taken from a list of words contained in a
text file. Words in this file must be listed one per line.

The SpellChecker class is the main interface to these files of words. We’re concerned
with three methods of this SpellChecker class:

■ void indexDictionary(Dictionary dict) Indexes the supplied dictionary.
■ String[] suggestSimilar(String word, int numSug) Provides a sorted num-

Sug-sized list of words similar to Microsoft Word.
■ String[] suggestSimilar(String word, int numSug, IndexReader ir, String

field, boolean morePopular) This is the same method as the second bullet if
both the IndexReader ir and String field are null. If they are not null, the
words are restricted to the specified field in the specified index, and the more-
Popular parameter takes effect. morePopular restricts the returned word list to
words that are more frequent than the searched-for word.

416 CHAPTER 13 Don’t reinvent the wheel
NOTE Both the API documentation and the authors recommend that you do
not allow numSug to be less than 5 in either of the calls to SuggestSimi-
lar. Lucene determines the best matches by fetching the most relevant n-
grammed terms. (this is not the same as the Levenshtein distance strat-
egy). Anything less will not result in the best match being returned.

As always, an example will best demonstrate how the SpellChecker class works. This
example will create a DVD index, build a spell-check index from that DVD index, and
look for a misspelled word. Listing 13.8 illustrates this process.

public class TestSpellChecker extends SearchTestCase {
 public List<String> results;
 private String baseDir;
 private Directory spellDir;

 String texts[] = {
 "Keanu Reeves is completely wooden in this romantic
 ➥misfired flick",
 "Reeves plays a traveling salesman and agrees to
 ➥help a woman",
 "Jamie Lee Curtis finds out that he's not really a
 ➥salesman"
 };

 @Test
 public void testSpellCheck() throws Exception {
 FullTextSession session =
 Search.getFullTextSession(openSession());
 transaction tx = session.beginTransaction();

 Try {
 buildIndex(session, tx);
 SpellChecker spellChecker =
 buildSpellCheckIndex("description",
 session);

 String misspelledUserInput = "kenu";

 assert !spellChecker
 .exist(misspelledUserInput)
 ➥: "misspelled word found";

 String[] suggestions =
 spellChecker.suggestSimilar(misspelledUserInput,
 5);

 assert suggestions.length == 1
 ➥: "incorrect suggestion count";

 for (String suggestion : suggestions) {
 System.out.println(suggestion);
 assert suggestion.equals("keanu");
 }

 tx.commit();

Listing 13.8 Building a SpellChecker index and testing its use

Build both
indexesB

A misspelled
search termC

Does the word
exist as is?D

Get the suggestionsE

Only 1 should be
returnedF

Returned word equal
to “keanu”G

417Playing in the Sandbox
 }
 finally {
 session.close();
 }
 }

 private SpellChecker buildSpellCheckIndex(String fieldName,
 FullTextSession session)
 throws Exception {
 SearchFactory searchFactory =
 session.getSearchFactory();
 DirectoryProvider[] providers =
 searchFactory.getDirectoryProviders(Dvd.class);

 org.apache.lucene.store.Directory DvdDirectory =
 providers[0].getDirectory();

 IndexReader spellReader = null;
 SpellChecker spellchecker = null;

 try {
 // read from the DVD directory
 spellReader = IndexReader.open(DvdDirectory);
 LuceneDictionary dict =
 new LuceneDictionary(IndexReader
 ➥.open(DvdDirectory), FIELD_NAME);

 // build the spellcheck index in the base directory
 spellDir = FSDirectory.getDirectory(baseDir);
 spellchecker = new SpellChecker(spellDir);
 // build the directory
 spellchecker.indexDictionary(dict);
 }
 finally {
 if (spellReader != null)
 spellReader.close();
 }

 return spellchecker;
 }

 private void buildIndex(FullTextSession session, Transaction tx) {
 session = Search.getFullTextSession(openSession());
 tx = session.beginTransaction();

 for (int x = x + 1; x < texts.length; x++) {
 Dvd dvd = new Dvd();
 dvd.setId(x);
 dvd.setDescription(texts[x]);
 session.save(dvd);
 }
 tx.commit();
 session.clear();
 }

The first thing to accomplish is to build the DVD index and build the spellchecker
index B after that. We define a misspelled word C to see if it is in the spellchecker

Get the DVD
index
directory

H

Create
dictionary
instance

I

Create a
spellchecker from
the DVD index

J

Make spellchecker
available

1)

418 CHAPTER 13 Don’t reinvent the wheel
index D. At E we ask for the top five suggestions from the spellchecker and assert
that only one suggestion should be returned F, one that is equal to “keanu” G.

 The next steps show how to build the spell-checking index. We first retrieve an
instance of the DVD Directory H through the usual Hibernate Search means. I cre-
ates a LuceneDictionary based on the DVD index, and once we have this we create a
SpellChecker instance J based on the spell-check directory. In 1) we call the
spellchecker.indexDictionary(dict) method to create the spell-check index and
return the SpellChecker instance for use by the rest of the test.

 In the next section of the chapter we’re going to look at third-party contributions.
Some applications are not free. Luke is free. The majority of these contributions deal
with extracting text from different document formats such as PDF files and Microsoft
documents. Let’s take a look.

13.2 Making use of third-party contributions
In the remaining sections of this chapter we’re going to examine those contributions
we mentioned at the beginning: those libraries and applications, some of which are
free and some not so free. We’ll discuss working with Adobe Systems PDF documents,
Microsoft documents, and just plain-old text files. These are common, everyday file
formats that you’ll work with constantly, so getting a good grasp on how to manipulate
them will definitely make your job easier.

13.2.1 Utilizing PDFBox to index PDF documents

In this section we’re going to show you how to extract the textual content from these
PDF documents for insertion into a Lucene index. We’ll look first at maintaining total
control of the process by developing a class that extracts the text and indexes it. Then
we’ll look at two different ways that PDFBox makes this process easier for us.

 PDFBox is an open source Java library. It was written and is maintained by Ben
Litchfield and enables you to work with PDF files. It is located at http://www.pdf-
box.org. With this library you can create PDF documents, manipulate existing ones,
and extract content from them. The last of these three capabilities is of particular
interest to Lucene developers.

 We’re going to look at two different ways to extract text from PDF documents. We’ll
start with the more difficult method.
EXTRACTING PDF TEXT AND MAINTAINING TIGHT CONTROL OF THE PROCESS

This is for all of the control freaks out there, and we know who we are, right? If you
want to know exactly what’s going on in the code while it’s executing, this is the text-
extraction method for you. It utilizes the base PDFBox classes and not only extracts the
text but also builds the Lucene index. We were kidding about control freaks. There
are many of us who just want to have more fine-grained control over a program in case
something fails. That way we can troubleshoot or debug more easily.

 Listing 13.9 shows this class in its entirety.

http://www.pdf-box.org
http://www.pdf-box.org
http://www.pdf-box.org

419Making use of third-party contributions

public class TestPDFTextExtractor extends SearchTestCase {
 InputStream istream = null;
 private Analyzer analyzer = new StandardAnalyzer();

 public void testPDFExtractor() throws Exception {
 FullTextSession session =
 Search.getFullTextSession(openSession());
 Transaction tx = session.beginTransaction();

 PDDocument doc = null;
 try {
 File f =
 new File("ch13/src/com/manning/hsia/dvdstore/file1.pdf");
 istream =
 new FileInputStream(f.getAbsolutePath());

 PDFParser p = new PDFParser(istream);
 p.parse();
 doc = p.getPDDocument();

 Pdf pdf = getDocument(doc);
 closeInputStream(istream);
 closeDocument(doc);

 buildIndex(pdf);

 QueryParser parser =
 new QueryParser("description", analyzer);

 Query query = parser.parse("description:salesman");
 org.hibernate.search.FullTextQuery hibQuery =
 s.createFullTextQuery(query, Pdf.class);
 List results = hibQuery.list();
 assert results.size() == 1: "incorrect result size";
 Pdf result = (Pdf) results.get(0);
 assert result.getAuthor().startsWith("John Griffin"):
 "incorrect author";
 assert result.getDescription().startsWith("Keanu Reeves"):
 "incorrect description";

 for (Object element : session.createQuery("from " +
 ➥Pdf.class.getName()).list())
 { session.delete(element);}
 tx.commit();
 }
 finally {
 session.close();
 }
 }

 private Pdf getDocument(PDDocument pd) {
 String description;
 try {
 PDFTextStripper stripper =
 new PDFTextStripper();
 description = stripper.getText(pd);
 }

Listing 13.9 Extracting and indexing text utilizing base PDFBox classes

Get the PDF via an
InputStream

Parse to a PDDocument

Grab the PDF textB

420 CHAPTER 13 Don’t reinvent the wheel
 catch (IOException e) {
 closeDocument(pd);
 throw new PDFExtractorException("unable to extract text"
 ➥, e);
 }
 PDDocumentInformation info =
 pd.getDocumentInformation();
 String author = info.getAuthor();
 String title = info.getTitle();
 String keywords = info.getKeywords();
 String subject = info.getSubject();

 Pdf doc = new Pdf();
 doc.setDescription(description);
 doc.setAuthor(author);
 doc.setTitle(title);
 doc.setKeywords(keywords);
 doc.setSubject(subject);
 return doc;
 }

 private void buildIndex(Pdf doc,
 FullTextSession session,
 Transaction tx) {
 session.save(doc);
 tx.commit();
 session.clear();
 }

 private void closeDocument(PDDocument pd) {
 try {
 if (pd != null) {
 pd.close();
 }
 }
 catch (IOException e) {
 // live with it
 }
 }

 private static void closeInputStream(InputStream istream) {
 if (istream != null) {
 try {
 istream.close();
 }
 catch (IOException e) {
 System.out.println("unable to close file input stream");
 }
 }
 }
}

Grab the PDF document by opening an InputStream on it. Then create a PDDocument
from that stream. The PDFTextStripper class physically extracts the text from the
PDDocument B. Also the PDF metadata can be extracted with the PDDocumentInforma-
tion class C. Finally, the Pdf entity can now be created D from the extracted text
and metadata.

Grab the PDF
metadata

C

Create a PDF entityD

421Making use of third-party contributions
NOTE The call to getPDDocument fails with the downloadable version 0.7.3. We
have included a nightly build with the book’s code that fixes this problem.

After executing PDFTextExtractor to build the index, we use Luke to examine it. Fig-
ure 13.2 shows that querying the author field for the term griffin produces the single
record that we indexed. It also shows that PDF metadata is placed into the index if the
data exists.

 Next we’re going to look at a class that accomplishes the same thing but does it in
such a way that you’re not required to write as much code as in the PDFTextExtrac-
tor class.
USING THE LUCENEPDFDOCUMENT CLASS

PDFBox provides support for Lucene out of the box. It includes a class called Lucene-
PDFDocument that will accomplish what we did with PDFTextExtractor but won’t
require us to write as much code. Most of it will be taken care of automatically. It also
provides a command-line utility that we’ll discuss in the next section.

 As an added bonus, where we had to manually extract the PDF metadata and insert
it into the created Lucene document, it will be automatically placed in the index for us
if it exists in the PDF document. The fields that will be inserted are listed in table 13.1.
We must admit that these are the fields listed in the PDFBox documentation as of the
time this book is being written. Future implementations may be different.

Figure 13.2 Examining the index created with the PDFTextExtractor class, showing the
information fields added in addition to the contents field

422 CHAPTER 13 Don’t reinvent the wheel

In the event that a Lucene document doesn’t have any of the metadata fields listed in
table 13.1, Luke will display <not available>. Listing 13.10 is a complete example of
how to use the LucenePDFDocument class.

public class TestPdfToDoc extends SearchTestCase {
 private Analyzer analyzer = new StandardAnalyzer();

 public void testPdfToDoc() throws Exception {
 FullTextSession session =
 Search.getFullTextSession(openSession());
 Transaction tx = session.beginTransaction();

 File f = new File("ch13/src/com/manning/hsia/dvdstore/file1.pdf");
 buildIndex(f.getAbsolutePath(), session, tx);
 tx = session.beginTransaction();

 try {
 QueryParser parser =
 new QueryParser("description", analyzer);

 Query query = parser.parse("description" + ":salesman");
 org.hibernate.search.FullTextQuery hibQuery =
 session.createFullTextQuery(query, Pdf.class);

 List<Pdf> results = hibQuery.list();

Table 13.1 A list of the available metadata fields that PDFBox classes will insert
into indexes

Lucene field name Description

Path File system path if loaded from a file

Url URL to PDF document

Contents Not easily accessible; stored as a StringBuffer

Summary First 500 characters of content

Modified The modified date/time according to the URL or path

Uid A unique identifier for the Lucene document

CreationDate From PDF metadata if available

Creator From PDF metadata if available

Keywords From PDF metadata if available

ModificationDate From PDF metadata if available

Producer From PDF metadata if available

Subject From PDF metadata if available

Trapped From PDF metadata if available

Listing 13.10 A complete example of utilizing the LucenePDFDocument class

423Making use of third-party contributions
 assert results.size() == 1: "incorrect result size";
 Pdf result = (Pdf) results.get(0);
 assert result.getAuthor().startsWith("John Griffin"):
 "incorrect author";
 assert result.getDescription().startsWith("Keanu Reeves"):
 "incorrect description";

 for (Object element : s.createQuery("from "
 ➥+ Pdf.class.getName()).list())
 { s.delete(element) };
 tx.commit();
 }
 finally {
 s.close();
 }

 private void buildIndex(String filename,
 FullTextSession session,
 Transaction tx) {
 Document doc = getDocument(filename);
 Pdf pdf = getPdf(doc);
 session.save(pdf);
 tx.commit();
 session.clear();
 }

 private Document getDocument(String filename) {
 Document doc;
 InputStream istream;
 File file = new File(filename);
 LucenePDFDocument pdf = new LucenePDFDocument();
 try {
 istream = new FileInputStream(file);
 doc = pdf.convertDocument(istream);
 }
 catch (Exception e) {
 throw new PDFExtractorException(
"unable to create document" , e);
 }
 return doc;
 }

 private Pdf getPdf(Document doc) {
 Pdf pdf = new Pdf();
 pdf.setAuthor(doc.get("Author"));
 pdf.setKeywords(doc.get("Keywords"));
 pdf.setSubject(doc.get("Subject"));
 pdf.setTitle(doc.get("Title"));
 pdf.setSummary(doc.get("summary"));
 pdf.setContents(getContents(doc.getField("contents")));
 pdf.setDescription(pdf.getContents());
 return pdf;
 }

 private String getContents(Field field) {
 StringReader reader =

BCreate a
LucenePDFDocument

instance

Get the PDF via an
InputStreamC

D
Create the Lucene
document

424 CHAPTER 13 Don’t reinvent the wheel
 (StringReader) field.readerValue();
 BufferedReader br = new BufferedReader(reader);
 String in;
 StringBuilder sb = new StringBuilder();
 try {
 while ((in = br.readLine()) != null) {
 sb.append(in);
 }
 }
 catch (IOException e) {
 System.out.println("unable to retrieve contents field");
 }
 finally {
 try {
 br.close();
 }
 catch (IOException e) {
 // Live with it.
 }
 }
 return sb.toString();
 }
}

Create a LucenePDFDocument instance B, then grab the PDF document by opening an
InputStream on it C. Once you have the stream, creating the Lucene document is
one step away D.

 Listing 13.11 shows the output of the code from listing 13.10. If you compare list-
ing 13.9 with listing 13.10, you’ll see that less coding was necessary to produce essen-
tially identical results.

 One more thing to cover before we move on to the next topic is the statement we
made concerning the Contents field in table 13.1. This field is not stored in the usu-
ally easily accessible Hit.get(fieldname) format we’re used to. It’s stored as a Java
StringBuffer object. Examining listing 13.10 at E, you can see that the Contents field
is still accessible albeit not quite as easily as with the get(fieldname) method.

contents - Keanu Reeves is completely wooden in this romantic misfire by
Alfonso Arau

➥ (Like Water
for Chocolate). Reeves plays a World War II vet who hits the road as a

traveling
➥salesman
and agrees to help a desperate, pregnant woman (Aitana Sanchez-Gijon)

Author - John Griffin & Emmanuel Bernard

CreationDate - 20080120110533

Keywords - LucenePDFDocument; Keanu Reeves; Alfonso Arau

ModificationDate - 20080120113135

Producer - Acrobat Web Capture 8.0

Listing 13.11 Example output from listing 13.9 if it were printed

Get the
Contents field

E

425Making use of third-party contributions
Subject - Testing PDFBox's LucenePDFDocument.class

Title - file1

summary - Keanu Reeves is completely wooden in this romantic misfire by
Alfonso Arau

➥(Like Water for Chocolate). Reeves plays a World War II vet who hits the road
as a traveling salesman and agrees to help a desperate, pregnant woman
(Aitana Sanchez-

➥Gijon)

So which one of these methods should you use to index your documents? That
depends on how lazy or how much of a control freak you are. Seriously, the degree of
control you need, the amount of time you have to accomplish what you need to do,
and many more factors dictate which method you employ. Ultimately you must decide.

 It’s time to move on to another document format. Like it or not, Microsoft docu-
ment formats are ubiquitous in today’s world. Knowing how to get at their content and
being able to put it into an index is a critical skill. Let’s see how we can achieve this.

13.2.2 Indexing Microsoft Word files with POI

The Apache POI Project exists to create and maintain pure Java APIs for manipulating
various file formats based on Microsoft’s OLE 2 Compound Document format. In
short, it allows you to read and write MS Excel files using Java. As we’ll show with
example code, you can also read and extract text from Microsoft Word documents.
The project is located at http://poi.apache.org/.

 Here are the different APIs and the application they are tied to:

■ POIFS A set of pure Java APIs for reading and writing OLE 2 Compound Docu-
ment formats

■ HSSF APIs for reading and writing Microsoft Excel 97 (Windows XP) spread-
sheets

■ HWPF APIs for reading and writing Microsoft Word 97 (Windows XP) docu-
ments

■ HSLF APIs for reading and writing Microsoft PowerPoint 97 (Windows XP)
documents

■ HDGF APIs for reading and writing Microsoft Visio documents
■ HPSF APIs for reading MFC property sets

POI welcomes anyone who is willing to help with the project, because a lot of work
remains to be done. The developers could use help in all aspects, including bug
reports, feature requests, and, just like every other project, documentation. If you’re
interested, join their mailing lists at http://poi.apache.org/mailinglists.html and
make yourself known.

NOTE Since Microsoft has recently (as of this writing) released its file formats to
the public domain, the POI projects will likely be changing quite a bit
over the next few months.

http://poi.apache.org/
http://poi.apache.org/mailinglists.html

426 CHAPTER 13 Don’t reinvent the wheel
Let’s look at an example of extracting the textual information from a Microsoft Word
2003 document. To run this example you’ll need to have both of these .jar files in your
classpath along with the usual .jars.

■ poi-scratchpad.jar
■ poi-3.0.1-FINAL.jar

Listing 13.12 shows how easy it is to accomplish this.

NOTE For the following unit test the document was changed from one para-
graph to two by splitting the second sentence into a separate paragraph.
This was done to demonstrate the return of individual paragraphs as dif-
ferent elements in the String array.

public class TestMSDocToIndex extends SearchTestCase {
 private Analyzer analyzer = new StandardAnalyzer();

 public void testExtractFromWordDoc() throws Exception {
 File f = new File("ch13/src/com/manning/hsia/dvdstore/file1.doc");
 buildIndex(f.getAbsolutePath(), session, tx);

 tx = s.beginTransaction();
 QueryParser parser = new QueryParser(decription, analyzer);

 Query query = parser.parse(description + ":reeves");
 org.hibernate.search.FullTextQuery hibQuery =
 s.createFullTextQuery(query, Dvd.class);
 List<Dvd> results = hibQuery.list();

 assert results.size() == 2: "wrong number of results";
 for (Dvd dvd : results) {
 assertTrue(dvd.getDescription().indexOf("Reeves") >= 0);
 }

 for (Object element : s.createQuery("from " +
 ➥DvdFromBridge.class.getName()).list()) s.delete(element);
 tx.commit();
 s.close();
 }

 // The preferred way to do this is via a bridge. For
 // simplicity’s sake we chose not to do that here.
 buildIndex(String filename, FullTextSession session, Transaction tx)
 InputStream istream =
 new FileInputStream(new File(filename));

 WordExtractor extractor =
 new WordExtractor(istream);
 String[] paragraphs =
 extractor.getParagraphText();

 for (int x = 0; x < paragraphs.length; x++) {
 Dvd dvd = new Dvd();
 dvd.setDescription(paragraphs[x]);
 dvd.setId(x + 1);

Listing 13.12 Extracting text from a Microsoft Word 2003 document

Get the file via an
InputStream

Use WordExtractor
to grab the text

B

Create an array
of paragraphsC

427Making use of third-party contributions
 session.save(dvd);
 }
 tx.commit();
 session.clear();
 }
}

Once you have an InputStream on the Word file, use a WordExtractor instance B to
get the text as an array of paragraphs C. The rest is a Java exercise.

 We’re not quite done. Before we finish with this chapter we’re going to examine
the process of indexing a simple text file to Hibernate Search.

13.2.3 Indexing a simple text file

 This is the simplest example in this chapter for a couple of reasons:

■ It has no dependencies other than the Java libraries and obviously Hibernate
Search.

■ No extraction process is necessary, because it is already plain text.

In the example given in listing 13.13 we’re going to use a text file called, ingeniously
enough, file.txt. It contains the first text listing of our DVD description files from the
end of chapter 12. We’ll read the file, construct an entity, and index it.

public class TestReadTextFile extends SearchTestCase {

 public void testTestFile() throws Exception {
 FullTextSession session = Search.getFullTextSession(openSession());
 Transaction tx = session.beginTransaction();

 File f = new File("ch13/src/com/manning/hsia/dvdstore/file1.txt");
 buildIndex(f.getAbsolutePath(), session, tx);
 tx = s.beginTransaction();

 try {
 Query query =
 new TermQuery(new Term(”description”, "salesman"));
 org.hibernate.search.FullTextQuery hibQuery =
 s.createFullTextQuery(query, Dvd.class);
 List<Dvd> results = hibQuery.list();

 assertEquals("wrong number of hits", 1, results.size());
 assertTrue(results.get(0).getDescription()
 ➥.indexOf("salesman") >= 0);

 tx.commit();
 }
 finally {
 s.close();
 }
 }

 private void buildIndex(String filename ,
 FullTextSession session,
 Transaction tx) {

Listing 13.13 Reading a plain text file and inserting the text into a Lucene index

428 CHAPTER 13 Don’t reinvent the wheel
 File in = new File(filename);
 BufferedReader reader = null;
 StringBuffer sb = new StringBuffer();
 try {
 String lineIn;
 reader =
 new BufferedReader(new FileReader(in));
 while ((lineIn = reader.readLine())
 != null) {
 sb.append(lineIn);
 }

 Dvd dvd = new Dvd();
 dvd.setDescription(sb.toString());
 dvd.setId(1);

 session.save(dvd);
 tx.commit();
 }
 catch (FileNotFoundException f) {
 System.out.println("unable to locate input file");
 }
 catch (IOException io) {
 io.printStackTrace();
 }
 finally {
 if (reader != null) {
 try {
 reader.close();
 }
 catch (IOException io) {
 System.out.println("unable to close file reader");
 }
 }
 session.clear();
 }
 }
}

Examining the generated index with Luke in figure 13.3 we can see that the POTF was
indexed exactly as we would expect. Searching on reeves shows that the index contains
one field, contents, and it contains the expected DVD description.

 Before we finish we want to examine one last document-extraction methodology,
XML. Several ways to accomplish this are possible, and we’ll examine two of them, the
Serial API for XML (SAX) and the DOM. Each of these methodologies goes about its
business in a different way, and we’ll examine both with examples and a discussion of
their pros and cons.

Read the file into
a StringBuffer

Create the entity

Write the entity
to the index

429Processing XML
13.3 Processing XML
XML, the Extensible Markup Language, has become ubiquitous. There’s no getting
away from it regardless of how hard you try. Quite a few Integrated Library Systems
(ILS) are heavily invested in utilizing XML. Many applications’ configuration files are
still formatted with it. If you really want to see just how far XML has been able to pene-
trate the market, search Google with the phrase “systems using xml.” We think you’ll
be surprised not just at how many systems use it but also at the variety of applications.

 Hibernate Search doesn’t handle XML in the way you’d normally expect. That is, it
wasn’t designed to take XML documents, parse them into individual entities, and
index them. It was, however, designed to parse individual entity properties containing
XML and index the extracted content.

NOTE This doesn’t mean that we’re saying entities cannot be built from XML
documents; they can. All we’re saying is that doing so is outside the scope
of this discussion, and you’ll have to build the entities before calling on
Hibernate Search.

Figure 13.3 Examining the index created by reading and indexing a plain text file. The index consists
of precisely one field, contents, which is exactly what we expected.

430 CHAPTER 13 Don’t reinvent the wheel
This process is what we’re going to talk about in this section. We’ll discuss both the
serial Simple API for XML (SAX) and then move on to the Document Object Model
(DOM).

13.3.1 Parsing with SAX

SAX was the first widely adopted API for XML in Java and is a de facto standard. A SAX
XML parser functions as a stream parser and is event-driven. The SAX events include
but are not limited to the following:

■ XML text nodes
■ XML element nodes
■ XML processing instructions
■ XML comments

Events are fired when each of these XML facets starts and again when they end. For
example, suppose we have an XML element <content>…</content>. An element start
event is fired when the <content> element is read, and an element end event is fired
when the </content> element is read. Any XML attributes present on an element are
provided as part of the data passed to element events.

 In order to respond to these events, you define callback methods that will be called
by the parser when these events occur. These callback methods are usually defined in
a subclass of the DocumentHandler interface, but we recommend that you extend the
DefaultHandler class in your code. The DefaultHandler class furnishes default
implementations of each of the DocumentHandler interface’s methods analogously to
a Java adapter class. Utilizing this will save you quite a lot of work.

 Several SAX parsers are available, and a partial list of them is given in table 13.2.
Let’s look at an example of parsing XML with a SAX parser. For our examples we’ll use
the Xerces-J parser. The entity we’ll use in this example is a CD entity and is shown in
listing 13.14.

Table 13.2 SAX parsers available for download and use

Parser

Parser class name Comments

Aelfred2
Gnu.xml.aelfred2.SAXDriver Lightweight nonvalidating parser; free

Oracle’s XML Parser for Java
oracle.xml.parser.v2.SAXParser Optionally validates; proprietary

Crimson
org.apache.crimson.parser.XMLReaderImpl Optionally validates; open source

Xerces-J
org.apache.xerces.parsers.SAXParser Optionally validates; open source

431Processing XML

@Entity
@Indexed
@Analyzer(impl=StandardAnalyzer.class)
@ClassBridge(name = "",
 index = Index.TOKENIZED,
 store = Store.YES,
 impl = SaxExampleBridge.class)
public class CD {

 private Integer id;
 private String title;
 private String artist;
 private String priceData;

 @Id
 @DocumentId
 public Integer getId() {
 return id;
 }

 public void setId(Integer id) {
 this.id = id;
 }

 @Field(index=Index.TOKENIZED, store=Store.YES)
 public String getTitle() {
 return title;
 }

 public void setTitle(String title) {
 this.title = title;
 }

 @Field(index=Index.TOKENIZED, store=Store.YES)
 public String getArtist() {
 return artist;
 }

 public void setArtist(String artist) {
 this.artist = artist;
 }

 public String getPriceData() {
 return priceData;
 }

 public void setPriceData(String priceData) {
 this.priceData = priceData;
 }
}

At B we specify a bridge class to parse the XML data that’s contained in the price-
Data property C. This property holds the year the CD was released, the company pro-
ducing it, and the CD’s price, as in the following XML fragment:

<CD YEAR=\"1985\"><COMPANY>Columbia</COMPANY><PRICE>10.90</PRICE></CD>

Listing 13.14 The CD entity used in the XML SAX parser example

Declare parsing
bridge class

B

Property holding
XML data

C

432 CHAPTER 13 Don’t reinvent the wheel
Bridge classes are a perfect fit for processing this kind of data (refer to chapter 4 if
you need to brush up on bridge classes). We’ll split the three items of information
contained in the priceData property into individual fields of a document for storing
in the index. Our SaxExampleBridge class extends the DefaultHandler class we men-
tioned before and thereby specifies the callback methods that the parser will invoke
when the related event occurs. This class is given in listing 13.15.

public class SaxExampleBridge
extends DefaultHandler
implements FieldBridge {

 public void set(String name,
 Object value,
 Document document,
 LuceneOptions options) {
 CD cd = (CD) value;
 String xml = cd.getPriceData();
 if (xml == null) {
 return;
 }
 InputSource source =
 new InputSource(new StringReader(xml));

 try {
 SAXParserFactory factory =
 SAXParserFactory.newInstance();
 SAXParser parser = factory.newSAXParser();
 SaxHandler handler =
 new SaxHandler(options, document);
 parser.parse(source, handler);
 }
 catch (SAXException s) {
 throw (new SearchException("unable to read cd price data", s));
 }
 catch (ParserConfigurationException p) {
 throw (new SearchException("unable to read cd price data", p));
 }
 catch (IOException i) {
 throw (new SearchException("unable to read cd price data", i));
 }
 }

 /**
 * FieldBridge implementations must be thread safe.
 * So it is necessary to parse the xml in its own
 * instance of a handler to guarantee this.
 */
 private class SaxHandler extends DefaultHandler {

 Map<String, String> attrs;
 List<Field> mFieldList = new ArrayList<Field>();
 Field.Store mStore;
 Field.Index mIndex;

Listing 13.15 The bridge class that implements callback methods to parse XML

Extend the
DefaultHandler class

B

FieldBridge set method
implementation

C

Grab the XML dataD

Create an InputSource
from the XMLE

Create parser
and parse XML

F

433Processing XML
 Field.TermVector mVector;
 Float mBoost;
 Document mDocument;
 StringBuilder text = new StringBuilder();

 public SaxHandler(LuceneOptions options,
 Document document) {
 mStore = options.getStore();
 mIndex = options.getIndex();
 mVector = options.getTermVector();
 mBoost = options.getBoost();
 mDocument = document;
 }

 public void startElement(String uri,
 String localName,
 String qName,
 Attributes attributes) {
 text.delete(0, text.length());

 if (attributes.getLength() > 0) {
 attrs = new HashMap<String, String>();
 for (int x = 0; x < attributes.getLength();
 x++) {
 attrs.put(attributes.getQName(x),
 attributes.getValue(x));
 }
 }
 }

 public void endElement(String uri,
 String localName,
 String qName) {
 if (qName.equals("CD")) {
 return;
 }
 else {
 Field field =
 new Field(qName.toLowerCase(),
 text.toString(),
 mStore,
 mIndex,
 mVector);
 if (mBoost != null) field.setBoost(mBoost);
 mFieldList.add(field);

 if (attrs.size() > 0) {
 Set<String> keys = attrs.keySet();
 for (String key : keys) {
 String attrValue = attrs.get(key);
 field =
 new Field(key.toLowerCase(),
 attrValue,
 mStore,
 mIndex,
 mVector);
 mFieldList.add(field);

startElement event
handler

G

Handle any
element attributes

H

endElement event
handler

I

Generate a field per
XML element

J

Generate a field
per attribute

1)

434 CHAPTER 13 Don’t reinvent the wheel
 }
 attrs.clear();
 }
 }
 }

 public void characters(char[] ch,
 int start,
 int length) {
 text.append(ch, start, length);
 }

 public void startDocument() {
 mFieldList.clear();
 }

 public void endDocument() {
 for (Field f : mFieldList) {
 mDocument.add(f);
 }
 }
 }
}

We start by extending the DefaultHandler class B discussed earlier, which, in con-
junction with generating an instance of a SAX parser F, declares this class as the han-
dler of all SAX-generated events. The first event fired is the startDocument event 1@,
where we initialize the FieldList.

 We implement the set method required by FieldBridges C. Here we extract the
XML from the priceData property D and create an InputSource object from it E.

 G is the event handler for each XML element. Here we clear the StringBuilder
text and then store any attributes of the element in a HashMap H for later retrieval.
When the endElement event is fired, processing continues at I. Unless the element is
the CD element, we create a field for the element itself J and also individual fields
for each attribute 1), if there were any for this element.

 When element text is encountered, the characters event is fired 1!. This fills the
text buffer for use by other events. Finally, at 1# we add each generated Field to the
document.

 Some people have problems conceptualizing callback methods. If you can deter-
mine from this example that you are one of those people, this may not be the easiest
XML processing model for you to grasp. In that event you could use the DOM, which
we discuss next.

13.3.2 Parsing with the DOM

In contrast to the SAX processing model, DOM processes XML via recursion. Uh-oh,
this is going to be another difficult topic. No, it really isn’t that difficult to understand.
Let’s first look at how DOM visualizes a document as opposed to how SAX does it by
examining figure 13.4.

Process element text1!

documentStart
event handler

1@

Add generated fields
to the document

1#

435Processing XML
With DOM, everything is a node, and it sees an XML document as a hierarchical tree
constructed of these nodes. To accomplish this, it’s necessary for the parser to read
the entire document into memory before any node processing takes place. This is in
contrast to SAX in that SAX processes XML serially as a stream. Notice in figure 13.4
that DOM has its own nomenclature for different types of nodes.

 Once a document is in memory, the DOM parser starts processing at the document
node, CD in this example, which is the top level of the tree, as shown in figure 13.4. It
then continues until all nodes are processed. Just like traversing up and down through
a directory tree, the way to accomplish this document traversal is by utilizing recursion.

 An example of this recursion should be the best way to demonstrate the process.
We will again utilize our CD class, but in this case we have named it CDDOM. This is
because we must declare a different bridge class to handle the XML parsing. The only
difference is this declaration:

@Entity
@Indexed
@Analyzer(impl=StandardAnalyzer.class)
@ClassBridge(name = "",
 index = Index.TOKENIZED,
 store = Store.YES,
 impl = DOMExampleBridge.class)
public class CDDOM {

Let’s examine listing 13.16, which shows our DOMExampleBridge.

Figure 13.4 Once they are entirely in memory, DOM documents are viewed as a hierarchical tree.

436 CHAPTER 13 Don’t reinvent the wheel

public class DOMExampleBridge implements FieldBridge {

 public void set(String name,
 Object value,
 Document document,
 LuceneOptions options) {

 CDDOM cd = (CDDOM) value;
 String xml = cd.getPriceData();
 if (xml == null) {
 return;
 }

 InputSource source =
 new InputSource(new StringReader(xml));

 DOMParser parser = new DOMParser();
 try {
 parser.parse(source);
 org.w3c.dom.Document xmlDocument =
 parser.getDocument();
 new DOMHandler(xmlDocument, document, options);
 }
 catch (SAXException e) {
 e.printStackTrace();
 }
 catch (IOException e) {
 e.printStackTrace();
 }
 }

 private class DOMHandler {
 List<Field> mFieldList = new ArrayList<Field>();
 Field mField;
 Field.Store mStore;
 Field.Index mIndex;
 Field.TermVector mVector;
 Float mBoost;

 public DOMHandler(org.w3c.dom.Document xmlDocument,
 Document document,
 LuceneOptions options) {
 mStore = options.getStore();
 mIndex = options.getIndex();
 mVector = options.getTermVector();
 mBoost = options.getBoost();

 traverse(xmlDocument.getDocumentElement());

 for (Field field : mFieldList) {
 document.add(field);
 }
 }

 private void traverse(Node node) {
 if (node == null) {

Listing 13.16 Parsing XML with DOM via recursion

Implement FieldBridge
set methodB

Create an XML
InputSource

C

Instantiate the
Parser and parseD

Start the
recursion

E

When finished, add
fields to document

F

If no Node, we
are finishedG

437Processing XML
 return;
 }

 int type = node.getNodeType();
 switch (type) {
 case Node.ELEMENT_NODE: {
 NamedNodeMap attrs =
 node.getAttributes();

 for (int x = 0; x < attrs.getLength(); x++) {
 Node attrNode = attrs.item(x);
 Field field =
 new Field(attrNode.getLocalName().toLowerCase(),
 attrNode.getNodeValue(),
 mStore,
 mIndex,
 mVector);
 if (mBoost != null) field.setBoost(mBoost);
 mFieldList.add(field);
 }

 NodeList children =
 node.getChildNodes();
 if (children != null) {
 int len = children.getLength();
 for (int i = 0; i < len; i++) {
 traverse(children.item(i));
 }
 }
 break;
 }
 case Node.TEXT_NODE: {

 if (node instanceof TextImpl) {
 if (!(((TextImpl) node)
 .isIgnorableWhitespace())) {

 Field field =
 new Field(node.getParentNode()
 .getLocalName().toLowerCase(),
 node.getNodeValue(),
 Field.Store.YES,
 Field.Index.TOKENIZED);
 mFieldList.add(field);
 }
 }
 break;
 }
 }
 }
 }
}

As always, we implement the FieldBridge’s set method B. Next, we convert our XML
to an InputSource C and get an instance of the DOMParser D. After parsing the XML
document E, we start recursing through the nodes by passing the DocumentNode F.

Process all XML
document nodes

H

Retrieve any
element attributes

I

Create a Field
per attribute

J

Recurse through child nodes1)

Process all XML
text nodes

1!

Ignore whitespace1@

Create a Field
per text node

1#

438 CHAPTER 13 Don’t reinvent the wheel
If the next node is null, we are finished G. Remember the recursion principles—it
always needs a way out.

 All elementNodes are processed at H. Processing starts by extracting any attributes
I, converting them to Document fields, and storing them in the Field ArrayList
mFieldList J. The last step in processing an elementNode is to gather its child
nodes, if any, and recurse through them 1).

 All textNodes (the actual contents of elementNodes) are processed at 1!, and after
skipping over any ignorable whitespace 1@, we convert the text to Document fields
using its parent node (the elementNode) name as the field name.

 Once we’ve processed the last node 1# in the document, we transfer all of the gen-
erated fields to the Lucene document, and we’re finished.

So which one of the parsers do we use? So far we’ve only shown you how to do the
parsing. Is one faster than the other, or more efficient, or more resource intensive?
We’ll answer these questions in the next section.

13.3.3 Pros and cons of the different methods

As with everything else in the world, there are good and bad issues with both SAX and
DOM parsing. This section looks at some of these and may aid you in making your
decision of which methodology to use when your time comes. Believe us—your time
will come! There’s no way to avoid it short of passing it off to someone else.

 Here are the most prevalent pros and cons:

■ Event-based parsing via SAX provides simple, lower-level access to an XML document.
Documents much larger than available system memory can be parsed, and call-
back handlers allow construction of specific data structures.

■ DOM parsing is inefficient. You start by building a memory-resident tree of
parse nodes, only to map it onto new data structures and then discard the orig-
inal tree.

■ SAX parsing is serial (read that as unidirectional). Previously parsed elements can-
not be reread without starting the parsing operation again.

PDF and Word extractors as a custom bridge
Section 13.2, in its entirety, was devoted to explaining how to extract information
from various formats. These extractions could very easily have been implemented as
custom bridges. You could have byte arrays (for PDFs) or URLs (for Word documents)
passed to these custom bridges and the extraction done there. The big benefit of this
is that the bridge could be easily reused anywhere you want. What is the title of this
chapter, “Don’t reinvent the wheel”?

439Processing XML
■ DOM parsing is parallel (read that as random access). Once an element is memory
resident, it can be accessed again and again in any order you choose. This
includes multithreaded applications accessing the element in parallel to
increase performance.

■ DOM-based parsing can put a strain on system resources, especially if the document
is large.

A while back Elliot Rusty Harold, who is well known in XML circles, tested several DOM
parsers to see what their memory requirements were, and the results were surprising.
The test consisted of loading the XML specification, second edition, into a DOM Docu-
ment object. This document in file size was 197KB. The simple program he wrote to
do this yielded the results given in table 13.3.

Looking at table 13.3 we can see that there are definitely some things that we should
be aware of. Best-case memory usage for the document was the Crimson parser, and it
required memory with a ratio of 1230/197, or 6.24/1! That’s more than six times the
size of the document. Worst-case usage required 2500/197, or 12.7/1. That’s more
than double the best-case usage.

 What can we conclude from this? Well, today memory is cheap, but depending on
the size of your XML documents, if you use DOM you’re going to need a lot of it. The
authors realize that this test data is a little dated since the tests were performed in
2002, and the DOM parsers have probably, over time, gotten better at their resource
utilization, but we can guarantee that they have not gotten that much better!

 Hopefully, this discussion of the pros and cons has shed some light on the different
parsers and will help you with your decisions, but we believe that you should consider
becoming familiar with both. This will also help you decide which one to use under
which circumstances.

 This chapter has shown that if you have a problem and are in need of a solution, in
all probability someone else has had that same problem. It’s like that old adage, “No
matter how good you are, there is always someone better.” Only in this case it is more
like, “No matter what the problem is, someone has probably already solved it.” Don’t
just start writing code; look around. With today’s search engine capabilities, it’s hard
to believe someone when he says, “I couldn’t find anything on it.”

DOM parser
Memory

requirements

Xerces-J 2.0.1 1489K

Crimson 1.1.3 (JDK 1.4 default) 1230K

Oracle XML Parser for Java 9.2.0.2.0 2500K
Table 13.3 DOM model memory
requirements for several DOM parsers

440 CHAPTER 13 Don’t reinvent the wheel
13.4 Summary
In this chapter you’ve seen that Lucene maintains an eclectic mixture of noncore
code in two separate repositories, the Sandbox and third-party contributions.

 The Sandbox is dedicated to code donated by the core developers along with
other personnel interested in the Lucene project, and it is a repository for new ideas.
The code is not actively maintained. It consists of such applications as synonym tools,
a large variety of foreign language analyzers, and many more utilities that will keep
you busy for quite a while.

 The third-party contributions section deals mainly with classes and applications
that extract text from various file formats such as Adobe Systems’s PDF, Microsoft
Word and Excel, and XML files. Some of these applications are free and some are not.

 We also examined two different methods of parsing XML documents, the serial
SAX and the DOM. These two XML parsers utilize completely different methodologies
for dissecting XML and have widely varying resource requirements.

 As the title of this chapter implies, the Lucene and Hibernate Search projects have
made many utilities and classes available for you to use and therefore save time and
work. It would be a great benefit to these projects and also to yourself if you were to
get involved in improving both projects. The authors recommend it.

 We’ve given you all the fundamental and practical knowledge you’ll need to use
Hibernate Search efficiently in your application and implement the most suitable
search engine for your users. Don’t forget, Hibernate is a very dynamic project with
lots of new and incremental features coming at each release. Expect the framework to
provide more higher-level features with newer versions and probably more control of
lower-level features also. Things you’re doing manually today might be automated
tomorrow. Be sure to check the reference documentation and change logs on a regu-
lar basis.

appendix:
Quick reference

This appendix aims at being a quick reference guide of the Hibernate Search artifacts:
annotations, APIs, and Lucene query APIs. For each artifact, a quick description and a refer-
ence to the book section or URL are provided.

Hibernate Search mapping annotations

Table A.1 describes Hibernate Search annotations.

Table A.1 Hibernate Search annotation summary

Name Description Reference

@Analyzer Defines an analyzer for a given entity, method, attribute, or
field. The order of precedence is @Field, attribute/
method, entity, default. Can reference an implementation
or an @AnalyzerDef definition.

Section 3.4.1

@AnalyzerDef Reusable analyzer definition. An analyzer definition defines
one tokenizer and, optionally, some filters. Filters are
applied in the order in which they are defined.

Section 5.2.1

@AnalyzerDefs Reusable analyzer definitions. Allows multiple
@AnalyzerDef declarations per element.

Section 5.2.1

@Boost Applies a boost factor to a field or an entire entity. Section 3.4.2, section
7.1.6, section 7.3.8

@ClassBridge Allows a user to manipulate a Lucene document based on
an entity change in any manner the user wishes.

Section 4.1.1, section
8.3.1

@ClassBridges Allows multiple @ClassBridge declarations per docu-
ment.

Section 4.1.1

@ContainedIn Marks the owning entity as part of the associated entity’s
index (to be more accurate, part of the indexed object
graph). This is necessary only when an entity is used as an
@IndexedEmbedded target class.
@ContainedIn must mark the property that points back
to the @IndexedEmbedded owning entity. Not necessary
if the class is an embeddable class.

Section 4.2.3
441

442 CHAPTER appendix: Quick reference
@DateBridge Defines the temporal resolution of a given property. Dates
are stored as strings in GMT.

Section 3.3.2

@DocumentId Declares a property as the document id. Section 3.2.3

@Factory Marks a method of a filter factory class as a Filter
implementation provider. A factory method is called when-
ever a new instance of a filter is requested.

Section 8.1.2

@Field Marks a property as indexed. Contains field options for
storage, tokenization, whether or not to store
TermVector information, a specific analyzer, and a
FieldBridge.

Section 3.3.1

@FieldBridge Specifies a field bridge implementation class. A field
bridge converts (sometimes back and forth) a property
value into a string representation or a representation
stored in the Lucene Document.

Section 4.1

@Fields Marks a property as indexed into different fields. Useful if
the field is used for sorting and searching or if different
analyzers are used.

Section 3.3.4

@FullTextFilterDef Defines a full-text filter that can be optionally applied to
full-text queries. While not related to a specific indexed
entity, the annotation must be set on one of them.

Section 8.1.2

@FullTextFilterDefs Allows multiple @FullTextFilterDefs per
FullTextQuery.

Section 8.1.2

@Indexed Specifies that an entity is to be indexed. An index name
that defaulted to the fully qualified class name can be over-
ridden using the name attribute.

Section 3.2.1

@IndexedEmbedded Specifies that an association (@*To*, @Embedded,
@CollectionOfEmbedded) is to be indexed in the root
entity index. It allows queries that involve associated
objects restrictions.

Section 4.2.2,
section 4.2.3

@Key Marks a method of a filter factory class as a Filter key
provider. A key is an object that uniquely identifies a filter
instance associated with a given set of parameters.
The key object must implement equals and hashcode so
that two keys are equals if and only if the given target
object types are the same and the set of parameters is the
same.
The key object is used in the filter cache implementation.

Section 8.1.2

@Parameter Basically a key/value descriptor. Used in @ClassBridge,
@FieldBridge, @TokenFilterDef, and
@TokenizerDef.

Section 4.1.1,
section 5.3.2

Table A.1 Hibernate Search annotation summary (continued)

Name Description Reference

443
Hibernate Search APIs

Table A.2 is a list of the main Hibernate Search APIs and their usage.

@ProvidedId Objects whose identifier is provided externally as opposed
to being part of the object state should be marked with
this annotation.
This annotation should not be used in conjunction with
@DocumentId. This annotation is primarily used in the
JBoss Cache Searchable project.

http://www.jboss.org/
jbosscache
and
http://www.jboss.org/
community/docs/DOC-
10286

@Similarity Specifies a similarity implementation to use in scoring
calculations.

Section 12.2.1

@TokenFilterDef Specifies a TokenFilterFactory and its parameters
inside an @AnalyzerDef.

Section 5.2.1

@TokenizerDef Defines a TokenizerFactory and its parameters inside
an @AnalyzerDef.

Section 5.2.1

Table A.2 Main Hibernate Search APIs

Class Description Reference

Search
(org.hibernate.search
.Search)

Helper method wrapping a Hiber-
nate Session object into a
FullTextSession object.

Main method:
getFullTextSession
(Session)

Section 6.2.1

Search
(org.hibernate.search
.jpa.Search)

Helper method wrapping a Java
Persistence EntityManager
object into a
FullTextEntityManager
object.

Main method:
getFullTextEntityManage
r(EntityManager)

Section 6.2.1

FullTextSession Main API used to interact with
Hibernate Search in a Hibernate
Core environment. Subclasses
and wraps a Hibernate
Session.

Main methods: see table A.3.

Section 6.2.1

Table A.1 Hibernate Search annotation summary (continued)

Name Description Reference

http://www.jboss.org/
http://www.jboss.org/

444 CHAPTER appendix: Quick reference
Table A.3 lists the FullTextSession methods.

FullTextEntityManager Main API used to interact with
Hibernate Search in a Java Per-
sistence environment. Sub-
classes and wraps a Java
Persistence EntityManager.

Main methods: see table A.4.

Section 6.2.1

FullTextQuery (Hibernate Core
and Java Persistence)

Subclasses either
org.hibernate.Query or
javax.persistence.Query
and provides full-text specific
query information.

Main methods: see table A.5.

Section 6.2.2

SearchFactory Provides application-wide opera-
tions as well as access to the
underlying Lucene resources.

Main methods: see table A.6.

SearchFactory instances can be
retrieved from
FullTextSession
.getSearchFactory() or
FullTextEntityManager
.getSearchFactory().

SearchException Exception is raised when an
error occurs. This is a runtime
exception and is used for all
Hibernate Search errors: map-
ping errors, configuration errors,
engine execution errors, and
usage errors.

Section 6.2.2

FullTextIndexEventListener Hibernate event listener; lis-
tens to entity changes and trig-
gers Hibernate Search indexing.

Section 5.3.1

DocumentBuilder
.CLASS_FIELDNAME

Name of the Lucene document
field in which Hibernate Search
stores the class name.

Section 6.2.3

Table A.3 FullTextSession methods

Method Description Reference

org.hibernate.Session methods FullTextSession inherits Session. All methods
are available, including persist, merge,
createQuery, and so on.

Section 2.4

FullTextQuery
createFullTextQuery(org.apache
.lucene.search.Query,
Class...)

Creates a FullTextQuery based on the Lucene
query and restricted to the list of classes passed as
a parameter.
Entry point for executing a full-text query.

Section 6.2.2

Table A.2 Main Hibernate Search APIs (continued)

Class Description Reference

445
Table A.4 lists the FullTextEntityManager methods.

SearchFactory
getSearchFactory()

Returns the SearchFactory object.

index(Object) Manually triggers indexing of an entity. The entity
must be managed.

Section 5.4.1

purge(Class, Serializable) Manually triggers an entity removal from the index.
The entity type as well as the id are passed as
parameters.

Section 5.4.1

purgeAll(Class) Manually triggers the removal of all index informa-
tion for a given entity type.

Section 5.4.1

flushToIndexes() Forces the flushing of all pending indexing changes
to the Lucene indexes immediately

Section 5.4.2

Table A.4 FullTextEntityManager methods

Method Description Reference

javax.persistence.En
tityManager methods

FullTextEntityManager inherits EntityManager. All
methods are available, including persist, merge,
createQuery, and so on.

Section 2.4

FullTextQuery
createFullTextQuery(
org.apache.lucene.se
arch.Query, Class...)

Creates a FullTextQuery based on the Lucene query and
restricted to the list of classes passed as a parameter.
Entry point for executing a full-text query.

Section 6.2.2

SearchFactory
getSearchFactory()

Returns the SearchFactory object.

index(Object) Manually triggers indexing for an entity. The entity must be
managed.

Section 5.4.1

purge(Class,
Serializable)

Manually triggers an entity removal from the index. The entity
type as well as the id are passed as parameters.

Section 5.4.1

purgeAll(Class) Manually triggers the removal of all index information for a
given entity type.

Section 5.4.1

flushToIndexes() Forces the flushing of all pending indexing changes to the
Lucene indexes immediately.

Section 5.4.2

Table A.3 FullTextSession methods (continued)

Method Description Reference

446 CHAPTER appendix: Quick reference
Table A.5 lists the FullTextQuery methods.

Table A.5 FullTextQuery methods

Method Description Reference

List list()/getResultList() Returns the results as a list. All results are loaded
up front.

Section 6.3.1

Iterate iterate() Returns an iterator on the results. Only the identi-
fiers are loaded up front.

Section 6.3.2

ScrollableResults scroll() Returns a scrollable object on the results. All
resources are only loaded when accessed. Don’t
forget to call close().

Section 6.3.3

Object uniqueResult() /
getSingleResult()

Returns a single object. Assumes the query
returns one and only one result.

Section 6.3.4

FullTextQuery
setFirstResult(int)

Pagination API. Sets the first element to retrieve.
Starts from 0.

Section 6.4

FullTextQuery
setMaxResults(int)

Pagination API. Sets the number of elements
returned.

Section 6.4

FullTextQuery
setProjection(String...)

Defines the projected properties. Properties must
be stored in the index.

Section 6.5

FullTextQuery
setCriteriaQuery(Criteria)

Overrides the default fetching strategy using a
Criteria object.

Section 6.8

FullTextQuery setSort(Sort) Sorts results by a defined order rather than by rel-
evance.

Section 6.7

FullTextQuery
setResultTransformer
(ResultTransformer)

Defines a result transformer. Applied on the query
results before they are passed to the user.

Section 6.6

FullTextFilter
enableFullTextFilter(String)

Enables a full-text filter described by an
@FullTextFilterDef annotation. The
FullTextFilter object lets you set the neces-
sary parameters for the filter. More than one filter
can be activated.

Section 8.1.3

disableFullTextFilter(String) Disables a full-text filter described by an
@FullTextFilterDef annotation.

Section 8.1.3

int getResultSize() Returns the total number of matching results
regardless of pagination.

Section 6.4.2

Explanation explain(int) Returns the Explanation object for a given doc-
ument id in a query. The document id is not the
entity id.

Section 6.9

447
Table A.6 lists the SearchFactory methods.

Table A.7 lists less-common Hibernate Search APIs.

Table A.6 SearchFactory methods

Method Description Reference

ReaderProvider
getReaderProvider()

Returns the ReaderProvider used. Allows open-
ing and closing of IndexReaders.

Listing 11.6

DirectoryProvider[]
getDirectoryProviders(Class);

Returns the list of directory providers associated
with a given class (one unless sharding is used).
Allows you to use Lucene natively.

Section 11.1.1

optimize() Optimizes all indexes. Section 8.3.1

optimize(Class) Optimizes Lucene indexes associated with the class
passed as a parameter.

Section 8.3.1

Analyzer getAnalyzer(String) Returns an analyzer by its @AnalyzerDef name.
Useful when the analyzer used for indexing should
not be used at query time. This is a rare case.

Section 7.2.4

Analyzer getAnalyzer(Class) Returns the scoped analyzer used to index a given
entity. In most cases, uses the same analyzer to
execute your queries.

Section 7.2.4

Table A.7 Other Hibernate Search APIs

Class Description Reference

DirectoryProvider Provides access to a Lucene Directory. Different
DirectoryProviders provide access to different
Directory storage systems or apply some index syn-
chronization.

Section 5.1

ReaderProvider Provides access to the (usually) shared Lucene
IndexReaders. Lets you use Lucene natively while
still benefiting from the Hibernate Search resource-
caching mechanism.
Be sure to use the open and close methods together
to avoid resource leaking.

Section 11.1.1

FilterCachingStrategy Implements a full-text filter-caching strategy. Section 8.1.2

FilterKey Class used uniquely to represent a filter and its filter
parameters in a cache system. A default implementa-
tion, StandardFilterKey, is provided.

Section 8.1.2

StringBridge Implements a simple custom field bridge that converts
a property value in a string.

Section 4.1.2

448 CHAPTER appendix: Quick reference
Lucene queries

Table A.8 is a list of the basic Lucene query types accompanied by a brief description. For a
comprehensive listing consult the Lucene Javadoc org.apache.lucene.search package.

TwoWayStringBridge Implements a simple custom field bridge that converts
a property value in a string. This bridge is also able to
perform the reverse operation. Useful for projected
properties and identifier properties.

Section 4.1.2

FieldBridge Implements a flexible custom field bridge that converts
a property value in an indexable structure. It has direct
access to the Lucene Document object.

Section 4.1.4

TwoWayFieldBridge Implements a flexible custom field bridge that converts
a property value in an indexable structure and is able
to perform the reverse operation as well. It has direct
access to the Lucene Document object. Useful for
projected properties and identifier properties.

Section 4.1.2

ParameterizedBridge Implemented by a field bridge that’s able to receive
parameters.

Section 4.1.3

Worker Responsible for receiving all entity changes, queueing
them by context, and deciding when a context starts
and finishes.

Section 5.3.4

QueueingProcessor Responsible for piling up changes in a given context,
preparing the work for Lucene, and triggering the work
either synchronously or asynchronously.

Section 5.3.4

BackEndQueueProcessorFactory Responsible for providing a Runnable instance that
will perform the list of Lucene changes. Typical imple-
mentations involve direct use of Lucene or sending a
message to a JMS queue.

Section 5.3.4

Table A.8 Main Lucene query classes

Query Description Reference

TermQuery This is the basic building block of queries. It searches for a sin-
gle term in a single field. Many other query types are reduced
to one or more of these.

Section 7.3.1

WildcardQuery Queries with the help of two wildcard symbols: * (multiple char-
acters) and ? (single character). These wildcard symbols allow
queries to match any combination of characters.

Section 7.3.4

PrefixQuery A WildcardQuery that starts with characters and ends with
the * symbol.

Section 7.3.4

Table A.7 Other Hibernate Search APIs (continued)

Class Description Reference

449
PhraseQuery Also known as a proximity search, this queries for multiple
terms enclosed in quotes.

Section 7.3.3

FuzzyQuery Queries using the Levenshtein distance between terms and
providing approximate results.

Section 7.3.5

RangeQuery Allows you to search for results between two values. Values
can be inclusive or exclusive but not mixed. Its variant the
ConstantScoreRangeQuery does not suffer from the
TooManyClauses exception. Check the Lucene Javadoc for
more information.

Section 7.3.6

BooleanQuery Holds every possible combination of any of the other query
types including other BooleanQuerys. Boolean queries com-
bine individual queries as SHOULD, MUST, or MUST_NOT.

Section 7.3.7

MatchAllDocsQuery Returns all documents contained in a specified index. Section 7.3.7

Table A.8 Main Lucene query classes (continued)

Query Description Reference

index
Symbols

- 227
^ 213, 227
! 227
? 227
“ 227
() 227
{ 227
} 227
* 227
\ 227
&& 227
+ 227
|| 227
~. See tilde

Numerics

2PC 143

A

AbstractJMSHibernateSearch-
Controller 323

accent 130
access strategy 41
ACID 141
acronyms 125, 128
active-passive 317
ad hoc queries 386

generation 212
adapter class 369, 430
Adobe 418
Aelfred2 430

AJAX 143
AliastoBeanConstructorResult-

Transformer 192
AliastoBeanResultTransformer

192
Altavista 12
Amazon 5, 183, 249

book search screen
example 5, 7

@Analyzer 218
@AnalyzerDef 127
analyzers 15, 31, 45, 53, 83, 116,

125, 216–223, 415
apply 127
applying manually 219
automatically applied to a

query 221
defining for specific

field 83
definition 127
filter 127
global 83, 220, 223
mixing 84
non-English language 130
oddities 217–218
performance 277
query-synonyms 217
specify a definition 127
tokenizer 127

annotations 67
ANT 400
Apache Commons

Codec 131
Collection 270

Apache Lucene. See Lucene
Apache Software Foundation 29

Apache Solr 20, 126
analyzers 216

ApacheCon 2007 388
apache-solr-analyzer.jar 216
apostrophe 125, 128
appliance solutions 19
application server 30
approximation 44
architecture 121, 145, 310
array 109

synchronized 228
associated objects 110
association 284

bidirectional 110
performance 277
 See also relationship

async 146
asynchronous 277

clustering 314
copy (index) 124
mode 316

attribute, access 75
Automatic optimization 291

B

backend 144, 314
BackendQueueProcessorFactory

150, 318
Backus-Naur notation 213
base query components 214
batch 153, 156

mode 293
batch size 174, 179

best value 175
451

INDEX452
@BatchSize 279
Bauer, Christian 175
benchmark 308
Berkeley 117
Bialecki, Andrzej 48
bidirectional association 110
bit mask 251, 287
BitSet 253, 270
blind

feedback 388
relevance feedback 388

blob 312
Boolean

operators 44
queries 203–205, 283
retrieval 364

Boolean keyword, NOT 404
Boolean.Occur

MUST 246
MUST_NOT 246
SHOULD 246

BooleanClause 246
BooleanClause.Occur flags 228
BooleanQuery 244–247, 249,

252, 267, 340, 372
increased memory usage 234
word syntax 203

BOOST 347
@Boost 85, 211, 247–248

example 248
boost 365, 405

APIs 247–249
in @ClassBridge 248
index time vs. query time 86
negative 85
one entity over an other 86
order of precedence 248
property 85

boost factor 46, 210, 247, 309,
375

default 210
document 366
example 210
field 366
range of values 210

boosting 354, 409
single term query 381

BoostingQuery 249, 404–409
boost greater than 1.0F 409
code signature 405
context 405
example of 407
match 405
scores after 408

bottleneck 308

brackets, do not mix 210
bridge 89

built-in 76, 90
class level 92, 261
custom 89, 241
definition 66
exception 94
flexible custom 99
JMS 320
Map 99
null 66, 78, 94
one-way flexible 99
one-way simple custom 93
one-way vs two-way 96
parameters 97
simple custom 93
thread-safety 98
two-way 90, 188
two-way flexible 101
two-way simple custom 95
type inference system 91
using 91

browse index documents 52
buffer 223
built-in directory providers 124

C

C, source code for determining
relevance 387

C# 135
C++ 208
cache 286–287

distributed 318
filter 287

CachingWrapperFilter 254
callback

handlers 438
methods 430, 434

caret symbol in boost factor 210
case 128
category

filter 288
navigation system 5
tree 5

CD class 431
change tracking 140
Chinese 126
class name 74
CLASS_FIELDNAME 74, 173
@ClassBridge 92–93
ClassCastException 171
classpath 31
clauses, number of 283
clear() 180

close() (FullTextSession) 167
cluster 120, 147, 166, 310, 329,

345–346
clustering 311

asynchronous 314
asynchronous

(variations) 317
directory provider

(master) 325
directory provider (slave) 321
in-memory distributed 312
master configuration 322
master node 317
queue 324
slave configuration 318
slave node 315
synchronous 311

code readability 276
Cognitive Science

Laboratory 409
collection 108

flattened 106
command-line 32
commit 142, 278
commodity hardware 311
commons-codec.jar 132
comparison 76–77, 95
Compass 312
components 107
composite

identifier 101
primary key (mapping) 101

compound file format 293
compress 80
concurrency 277

ACID 25
concurrent

access 287
threads 278

configuration 34, 68
ConnectionFactory 319
ConstantScoreRangeQuery 244

speed increase 244
constructor 192
@ContainedIn 110, 155, 279
contention 277
context 149
continuous script 126
contributions 418–427
conversation 143, 267
conversion 64, 76

structure 65
type 66

coord 365, 367, 373–375
calculation, changing 373

INDEX 453
copy
asynchronous 322
operation 124

CopyDirectory 344
inner class 346

core 311
corpus 387, 394
correlated query 104
corruption (index) 311
count(*) 185
crash 317
crawl 12–13
create read update delete. See

CRUD
createFullTextEntityManager

167
createFullTextQuery 168
createFullTextSession 167
createWeight 378
Crimson 430, 439
Criteria 161, 197
cross-cutting restriction 251
CRUD 71
cursor, forward only 378
custom

bridge 241–244, 438
query generation 224

Cutting, Doug 394, 405

D

dash 125
data

grid 313
mining 224
population process 306

database 8, 24, 285, 295
all-or-nothing 201
local vs remote 308
Lucene as a 25
performance 155
relational 22
row 71
version 308

Date 90
date 23, 77
@DateBridge 78, 209
DbUnit 305
de facto standard 430
decode 366, 379

loss of precision 366
default 117

Formatter class 404
DEFAULT_ANALYZER 395
DEFAULT_FIELD_NAMES 396

DEFAULT_MAX_NUM_
TOKENS_PARSED 396

DEFAULT_MAX_QUERY_
TERMS 395

DEFAULT_MAX_WORD_
LENGTH 395

DEFAULT_MIN_DOC_
FREQ 395

DEFAULT_MIN_TERM_
FREQ 395

DEFAULT_MIN_WORD_
LENGTH 395

DEFAULT_STOP_WORDS 396
DefaultHandler class 430

extending 434
DefaultSimilarity 364–378
delay 315
delimiters

fieldname/term 227
phrase query 227

denormalization 71, 105
dependency injection 30
depth 113

limit 112
Derby 36, 119, 305
df. See document frequency
Directory 117, 311

RAM-based 329
warning 329

directory provider 117
cluster 120
custom 124
database 312
filesystem 68, 118
in-memory 68, 119

directory_provider 117
DirectoryProvider 117, 124, 300,

312, 329–338, 342–350
custom 344
sharing 329
use cases 344
writing 343

disableFullTextFilter 260
disjunction query 247
disk

file structures 292
space 290

distinct 280
distributed cache 318
DocIdBitSet 253, 270
DocIdSet 287
DOCUMENT 347
Document 64–65, 89, 99, 101,

150, 162, 164, 190, 283
id 190

document 13, 39, 105
feedback 388–393
frequency 356, 360–361, 394
global information 355
length normalizing 359
local information 355
lowering the score 405
node 435
normalization 366
traversal recursion 435
unit 214, 216
update 140
weight 362

Document (Lucene) 23
DOCUMENT_ID 347

projection 190
Document.setBoost 248, 366
DocumentBuilder.CLASS_

FIELDNAME, effect of 339
DocumentHandler 430
@DocumentId 39, 72
DOM 434

efficiency 438
hierarchical tree 435
model memory

requirements 439
parsing 434–438
system resource

utilization 439
domain model 22, 162
dot product 357–358
DoubleMetaphone 131
DVD store application 29

E

EAN 40
EAR 33
EasyMock 303
eBay 249
edit distance 231
efficiency 175
EHCache 271
EJB 144
EJB 3.0 167
elementNode 438
ElementType

FIELD 218
METHOD 218
TYPE 218

Elision 125
ElisionFilter 130
embedded objects 107
enableFullTextFilter 260
English 83

INDEX454
Enterprise Archive. See EAR
entity filter 337
entity. See domain model
enumeration of terms 238
equals()/hashCode() 258
ERLANG 135
escapeSpecials 227
European Article Number.

See EAN
event

characters 434
element end 430
element start 430
endElement 434
listener configuration 36, 140
startDocument 434

event model, disable 156
event-driven 430
Excel 425
exception 171

lock 312
execution order 244
explain 199, 367, 370, 372, 378,

381
method 366
query 55

Explanation 191, 198, 347, 368
fullTextQuery.explain 347
performance 347

explanation 374, 378, 381
first method 368
second method 370

EXPLANATION
(projection) 191

expressions, regular 226
Extension points 148
external change 157

F

@Factory 256
family of words. See stemming
feedback 309, 388, 395
fetch

associations 280
strategy 196, 284

FetchMode.SUBELECT 279
@Field 39, 75, 82
Field 64
field 39, 66

access 40, 75
bridge. See bridge
Lucene 214
normalization 372

setBoost 366
TermVector 389
TermVector values 389

field (Lucene) 23
@Field.index 79
@Field.store 80
fieldable 248
Fieldable.setBoost 248
@FieldBridge 91
FieldBridge 99, 434, 437
fieldNorm 368, 372
FieldSelectorResult 350
fieldWeight 368
files, number opened 289
filesystem

local 119
shared 123
shared vs local 308

filter 251, 269, 287, 364, 380
analyzer 126
apply 259
built-in 254
cache 256
cache size 257
caching 287
caching and parameters 258
caching instance 256
caching results 256
category 261, 288
chained filters 259
chaining 216
declare 255
disable caching 257
enable 259
examples 261
exclusion 263
external service 269
factory 255
Lucene 253
own caching system 271
parameter 257
performance 283
query based 262
range 264
search within search 267
security 261, 288
temporal 288
vs query 252

FilterCacheModeType 256
FilterCachingStrategy 257
FilterKey 258
firstResult() 185
flexibility 18
flush mode 143
flushing 142

flushToIndexes 154
Formatter class 404

injecting 404
method signature 403

forward only cursor 378
free-text search. See full-text

search
Freider, Ophir 356
frequencies 361, 392
FSDirectoryProvider 68, 118
FSMasterDirectoryProvider 122
FSSlaveDirectoryProvider 123,

343–346
full-text queries 161
full-text search 12

Altavista 12
choosing a solution 21
efficient 16
flexibility 18
Google 12
main goal 12
management 17
Microsoft SQL Server 18
MySQL 18
Oracle DB 18
portability 18
scalability 18
Yahoo! 12

full-text search solution 17
dedicated box 19
library 20
relational engine 17

FullTextEntityManager 42, 166
build 166

FullTextEntityManager.close()
167

@FullTextFilterDef 255, 288
@FullTextFilterDefs 255
FullTextQuery 168, 171
FullTextQuery.EXPLANATION

370
FullTextSession 42, 166

build 166
obtaining SearchFactory 328

FullTextSession.close() 167
function package, warning 398
FuzzyQuery 130, 208–209, 237–

240, 249
difference from proximity

query 208
example 237
problem with 415

FuzzyTermEnum 238–240

mailto:@Field.index
mailto:@Field.store

INDEX 455
G

garbage collection 313
get (method) 103
getDelegate() 198
getDirectoryProviders 329
getDirectoryProvidersForall-

Shards 301
getDirectoryProvidersFor-

Deletion 300
getDocIdSet 254
getEnum(reader) 240
getFullTextEntityManager 42,

167
getFullTextSession 42, 166
getResultList() 176
getResultSize() 187
getSimilarity 379
getSingleResult 181
getter, access 40, 75
GigaSpace 122, 312, 318

Lucene 124
Gilleland, Michael 208
global analyzer 220, 223
good citizen rules 342

consequences of not
following 343

Google 12, 16, 183, 249, 275,
295, 386

I’m Feeling Lucky 181
PageRank 12
Search Appliance 19

Gospodnetic̀, Otis 45
Grails 30
Grossman, David 356
guaranteed delivery 316
Guice 30

H

H2 36, 119, 305
hard drives 297
Harold, Elliot Rusty 439
hash 297
Hatcher, Eric 45
hbm.xml 30

mapping file 41
HDGF. See POI project
heterogeneous results 171
heuristic variables, defaults 395
heuristics 394–395
Hibernate

Annotations 30
Annotations or Core? 36
Core 30
EntityManager 30

Hibernate Annotations 140
_hibernate_class 74, 173, 339–

340
<_hibernate_class> 341
Hibernate Core 29
Hibernate EntityManager 140
Hibernate Query Language.

See HQL
Hibernate Search 3, 29

configuration-by-
exception 34

DoubleMetaphone 131
download 31
executing a query 47
guide to annotations 441
listens to Core 42
Metaphone 131
property 214
providing properties 117
query data 43
Refixed Soundex 131
requirements 30
setting up 31
Soundex 131

hibernate.cfg.xml 140
file 34

hibernate.search 117, 291
hibernate.search.analyzer 83
hibernate.search.default.index-

Base 343
hibernate.search.filter.cache_bit

_results.size 257
hibernate.search.filter.cache_

strategy.size 257
hibernate.search.indexing_

strategy 156
hibernate.search.similarity 370
hibernate.search.worker.batch_

size 154
hibernate.search.worker.jndi.

class 320
hibernate.search.worker.jndi.url

320
hibernate.worker.buffer_queue.

max 146
hibernate.worker.execution 146
hibernate.worker.jndi 147
hibernate.worker.thread_pool.

size 146
hibernate-search.jar 31
hibQuery.scroll() 348
hierarchical tree, DOM 435
Highlighter 400–404
highlighting 81
HPSF. See POI project

HQL 29, 47–48, 105–106, 161,
163

query 43
HSLF. See POI project
HSQLDB 36, 119, 305
HSSF. See POI project
HTML 404
HTTP request 322
HTTPSession 267
hydrating objects 165, 188
hyphenation 125

I

I’m Feeling Lucky 181
ID 347

projection 190
identifier property 89, 95, 104

bridge 91
idf 339, 356, 360, 365, 368

low term frequency 394
ignorable whitespace 438
ILS 429
import.sql 305
incremental copy 316
index 10

accent 130
crawl 19
directory 34
disposability 346
distributed 122
in-memory 36
master 343, 346
merging 329, 337
method 151
model 23, 104
model vs. object model 64
optimize structure 288
out of date 166
PDF 20
problems with size 206
root directory 118
scan 11
seek 10
sharded 118
source copy 346
splitting 294
statistics 51
storage

recommendations 346
structure 73
synchronizing 17
where to store 117
Word document 20

Index.NO 80

INDEX456
Index.NO_NORMS 80
Index.TOKENIZED. See

TOKENIZED
Index.UN_TOKENIZED. See

UN_TOKENIZED
index() 280
indexBase 34, 68, 118, 337, 345–

346
@Indexed 39, 68

index property 337
when to use 71

indexed collections 109
@IndexedEmbedded 107, 155,

279
performance 277

indexing 13, 115
architecture 148
asynchronous 145, 278
concurrent 277
disabling transparent

indexing 156
heavy writing 145
information 202
initial 151
initial indexing 153
JMS 146, 279
manual 42
mass indexing 153, 279
performance 155, 276–277
properties 39
remove old content 281
size 276
slow 155, 276
speeding performance 67
strategy 67
synchronous 144
third party changes 157
time 109, 276
transparent 139
troubleshooting 73
tuning operations 292

indexName 118
IndexReader 162, 253, 256, 286

caching 342
closing 332
cost of opening 342
explicitly closing 342
not closing 342
outside of the Hibernate

Search framework 341
retrieving instance of 342
rules of use 343
sharing 342
warm up 286

IndexSearcher 162

IndexShardingStrategy 297
IndexWriter 292
information indexing 202
Ingersoll, Grant 388
inheritance 64
Initial indexing 153
InitialContext 320
injection 167
in-memory 318

database 305
InputSource 434, 437
INSTANCE_AND_DOCIDSET-

RESULTS 256
INSTANCE_ONLY 257
Integrated Library System.

See ILS
integration testing 305
interface 108
International Standard Book

Number. See ISBN
inverse document frequency.

See idf
ISBN 7
ISOLatin1AccentFilterFactory

130
iterate() 177

J

jakarta-regexp.jar 412
JakartaRegexpCapabilities 414
Japanese 126
JAR 31
Java 3, 8, 135, 157, 208
Java 5 30
Java Archive. See JAR
Java Compiler Compiler.

See JavaCC
Java Development Kit. See JDK
Java EE 30, 33, 318, 323
Java Message Service. See JMS
Java Naming Directory Inter-

face. See JNDI
Java Network Launching Proto-

col. See JNLP
Java Persistence 68
Java Persistence Query Lan-

guage. See JPA-QL
Java Persistence specification 40
Java Runtime Environment.

See JRE
Java SE 30, 320
Java WebStart JNLP, download

Luke 48
JavaCC 212

JavaUtilsRegexpCapabilities 414
JBoss 144
JBoss AS 74, 148, 318
JBoss Cache 122, 124, 271, 312–

313, 318
JBoss Maven 31–32

repository 126
JBoss Seam 30, 143–144, 167,

267, 367
JBossCacheSearchable 313
jboss-service.xml 319
JDBC 71, 117, 144, 329, 378

author recommendations 329
driver 71
RowSet 378

JDK 30
JGroups 314
JMeter 308
JMS 146, 157, 316–317

backend 318
indexing 279
queue 319

JMSBackendQueueProcessor-
Factory 150

JMSqueue 316
JNDI 147, 319
JNLP 58
join 105
JOIN (SQL). See relationship
JPA-QL 47, 163
JRC-ACQUIS Multilingual Paral-

lel Corpus 387
JRE 30
JUnit 305–306

K

keyword spamming 361–363
counting terms 363
simulating 362

King, Gavin 175
Knuth, Donald 276

L

languages 125
European 128
Greek 128
Russian 128

large term count effects,
minimizing 361

Latin 126
lazy loading 25, 44

association 162
transparent 163

INDEX 457
LazyInitializationException 197
leading zeros 95
legal 295
lengthNorm 366, 369, 372

formula 366
ignoring 372
overriding rules 372

Levenshtein Distance 130
algorithm 208

lifecycle 110
lightweight 30
Linux 288–289
list() 176
Litchfield, Ben 418
local

copy 315
copy index 121
filesystem directory

provider 118
queue 320

lock 278, 295
file 311
global pessimistic 120, 146

log files, data mining 224
log search 308
look behind, negative 228
Lovins, Julie Beth 135

stemming algorithm 135
lowercase 128
LowerCaseFilter 128
LowercaseFilter 223
Lucene 20–21, 29, 144

analysis package 216
analyzer 45
blob 346
clauses limit 283
code changes often 380
Contrib 131
Directory 68
directory 117
download 31
field 76, 214
filter 253
index 43
mailing list 353
native APIs 101
query 162
query parser syntax 54
Sandbox 400
scoring formula 364
sharing a directory 69
stop work list 129
testing a query 54

Lucene query 44
preparation 164
writing 44

LuceneBackendQueueProcessor
150

lucene-benchmark-
javadoc.jar 388

LuceneDictionary 415
lucene-highlighter.jar 400
LucenePDFDocument

class 421–425
example of 422
output of 424
utilizing 422

LucenePDFDocument, contents
field 424

lucene-queries.jar 405
lucene-regex.jar 412
lucene-spellchecker.jar 415
lucene-wordnet.jar 409
Luke 48, 73, 118, 198, 202, 340,

418
analyzer 55
browse index documents 52
classpath 48
Document tab 51
download 48
explain 55
index size 55
index statistics 51
open an index 50
Overview tab 50
plugins 57
query 54
Search tab 54
term list 51
Tokenized tab 53
unlock an index 50

M

mailing list 353
maintenance 295
managed

entity 152
environment 323
objects 26, 43, 163, 188

manual 156
indexing 42

Map 90, 99
MapFieldSelector 350
mapping 38, 63

abstract class 71
analyzer 83
annotations 38
array 109
associated objects 110
boost factor 85

class hierarchy 69
collection 108
composite primary key 72,

101
custom bridge 89
depth 112
directory name 68
embedded objects 107
entities 67
identity property 71
indexed entity 68
indexing strategy 78
nested associations 112
primary key 71
property 75
same property multiple

times 82
share Lucene directories 68
store 80
subclass 69
tokenize 79

master 146
node 122, 314, 317

MatchAllDocsQuery 246, 263
max_field_length 294
max_merge_docs 292
maxGramSize 131
maxResults() 185
MDB 317
memory 280, 292

usage 178
merge 292

segments 292
merge_factor 292
MergedFurniture 338–339
Merging, benefit of 337
message persistence 316
@MessageDriven 323
message-driven bean 317, 322
MessageListener 323
metadata 361, 420–422

index 190
META-INF/persistence.xml

file 34
Metaphone 131
MFC property sets, reading 425
Microsoft

Excel 425
file formats 425
PowerPoint 425
SQL Server 18
Visio 425
Word 90, 425

Middle Ages 126
minGramSize 131

INDEX458
minimumSimilarity 208, 238
default value 238
definition 209
range of values 208
warning 209

mismatch 22, 161
retrieval 25
structural 23
synchronization 24

misspellings 415
help with 412

MMapDirectory 50
mocking 303
models, index vs. object 64
modulo 297
MoreLikeThis 393, 395–398

default values 395
heuristic methods 395
warning 394

MoreLikeThis.setboost 249
MultiFieldQueryParser 46, 228–

231
example 229
static parse methods 228

multistage search engine 187
multiterm 374

query 365, 372
MultiTermQuery class 240
MySQL 18

blob 312

N

n+1 loading issue 178
problem 284
query problem 279

naming conventions 107
navigation 105
nbr_of_shards,

configuration 334
negative look behind 228
nested associations 112
network 276

performance 155
topology 318

network filesystem. See NFS
next(Token token) 223
NFS 119, 311, 314, 317
n-gram 209, 412

algorithm 130
NGramTokenFilter 131
NGramTokenFilterFactory 131
NIO 50
n-node, problem 345
NO_NORMS 372

no-arg constructor 255
node 121

master 121–122
processing 435
slave 121

noise 5
word 128

nonblocking I/O. See NIO
NONE (FilterCacheMode-

Type) 257
non-sharded 330, 335
NoResultException 183
norm 365, 372
normalization 104, 364, 369,

372, 379
preventing 372

normalize 381
normalizing document

length 359
<not available> 340, 422
null, special marker 66
number 23, 90

of files opened 289
of operations 291
of transactions 291

numeric fields 242
numSug 416

O

object
graph 106, 284
identifier 190
model 104
total number of 164

object model
Java vs. Lucene 64
vs. index model 64

object-oriented paradigm 46
object-relational mapper.

See ORM
objectToString 94
occurrence, number of 81
offline indexes 291
offset 81
OLE 425
OLE 2 Compound Document,

reading and writing 425
OpenBitSet 253
optimization

premature 276
query 162

optimize 174
premature 282

optimize() 281, 289

optimize(Class) 289
optimizer.operation_limit.max

291
optimizer.transaction_limit.max

291
optimizing 153

automatic 291
index structure 288, 292
index structure benefits 288
index structure manual 289
index structure, limit on open

files 288
index structure, need for 290
queries 282

Oracle DB 18
XML Parser for Java 430, 439

order 177, 267
of execution 211
 See also sort

org.hibernate.search.worker.
scope 149

ORM 22, 29
OutOfMemoryException 120,

146–147, 152–153, 180–181,
278, 280, 294, 316, 322

override 364, 372
coord factor 374
DefaultSimilarity 369

P

padding 91, 210, 241
numbers 94–95

PadNumberBridge 242–244
PadNumbers, example 242
PageRank 12
pagination 183, 347

performance 283
user limit 183

@Parameter 127
ParameterizedBridge 97, 242
parameters 97
parent node 438
ParseException,

RangeQuery 210
parsing 202
partitioning, legal 295
PDDocument 420
PDF 90

from custom bridge 438
PDF metadata 421

contents field 424
field listing 422
inserting 421

PDFBox 418, 421
URL 418

INDEX 459
PDFTextExtractor 421
PDFTextStripper class 419–420
PDFTextStripper, example

of 419
performance 67, 141, 145, 276

degradation 206
goal 276
hydrating objects 165
testing 308

Perl 135
persistence context 43–44, 89,

164, 190
loading matching objects 165

persistence unit 322
pessimistic lock 119, 145, 311,

314
scalability 346

Philips, Lawrence 131
phonetic approximation 11, 131
PhoneticFilterFactory 132
PhraseQuery 207, 231–234

example 231
plain old Java object. See POJO
Plain Old Text File. See POTF
PlainTextDictionary 415
POI project 425

contributing to 425
mailing lists 425

POI, WordExtractor class 426
poi-FINAL.jar 426
POIFS. See POI project
poi-scratchpad.jar 426
POJO 38
polymorphism 47, 64, 69, 71,

173
POM 32
portability 18
Porter, Michael 135

stemming algorithm 135
position 81
POTF 427–428

dependencies 427
PowerPoint 425
Precision 387

defined 387
denominator 138

precision 386
and recall 386

prefix 107
PrefixQuery 207, 236–237

example 236
premature optimization 276,

282, 303
Princeton University 409
problem, n+1 284

Processing XML 429–439
projected property 95
projection 40, 80, 188, 347, 367,

370
in code 348
performance 284
performance

improvements 350
queries 90

ProjectionConstants 347, 349
validity of 349

Prolog 409
property

Hibernate Search 214
visibility 75

proximity searches 231
ProximityQuery 207

difference from fuzzy
query 208

ProximitySearch 207
pseudo relevance, feedback 388
punctuation 128
purge (method) 152
purgeAll() 152, 281

Q

quality of service 145
Query 47
query

across multiple fields 228
ad hoc 212, 386
Boolean 283
boosting 375–378
building 166
correlated 89, 104
escape special characters 226
explaining 191
explanation 198
full-text 161
fuzzy 208
generating custom 224
grouping expressions 212
Hibernate Search 46, 163
HQL vs. Hibernate Search 48
improve readability 211
interface 164
JPA-QL query vs. Hibernate

Search 48
Lucene 44
mimicry 163
more like this 81
multiple analyzers 221
multiple terms 372

n+1 problem 279
negative 263
n-gram 209
normalizing 360
optimizing 282
order of execution 211
pagination 183
parser 44
phrase 207, 231
polymorphic. See polymor-

phism
production 90
programmatic API 15
proximity 207
range 209
receiving meaningful

answers 184
relevance 359
semantic 163
size reduction 361
slow 188
Soundex 209
special characters 226
string-based 15
term 225
text-based language 15
tokens 412
understanding results 198
wildcard 206

Query object 168
query results, demoting 404
Query.createWeight 378
Query.setboost 249
Query.toString 224
query-helper classes 409
Querying 43
querying 161

database and index
desynchronization 166

execution 175
fetch size 179
iterator 177
list 176
managed objects 164
number of results 186
object loading strategy 174
performance 282
persistence context 164
projection 188
restricting entities 171
result structure 191
returning multiple types 172–

173
scrollable resultset 178
single result 181

INDEX460
querying (continued)
sort 194
speed 183
subclass 173
transforming results 191

queryNorm 365, 377, 381
QueryParser 206, 209–214, 226–

228, 249
drawback 214
escape 214
setDefaultOperator 214
syntax 202–214
warning 214

QueryParser, Operator, default
value 214

QueryParser.jj 212
QueryWrapperFilter 254
queue 324

change 142
limit 278

QueueingProcessor 150

R

RAID 345
RAM 292
ram_buffer_size 292
RAMDirectoryProvider 68, 120
random file access 165
range 264

lexicographic 210
ranged query 77
RangeFilter 254, 266

vs RangeQuery 264
RangeQuery 78, 209–210, 240–

244, 249, 264, 294
bracket types 209
definition 209
problem with 210
problem with numerics 240
with Strings 210

raw score 375, 379, 409
ReaderProvider 286, 342

closing reader 342
ReaderStrategy 286

configuration property 342
default value 342

read-mostly 277
Recall 387

defined 386
denominator 138

recursion 434
RefinedSoundex 131
refresh 122

regex 412
queries 399
query 412–415
warning 412

RegexQuery, example of 413
RegexTermEnum 240
regular expressions 226
rehydrated 89
reindexing 297
relational

database 277
model 104

relationship 23, 104
performance 277

relevance 4–5, 12, 14, 16, 80,
138, 194, 215, 267, 364, 386–
398

accuracy requirements 387
effectiveness

measurements 386
feedback 388, 395
increasing 388
size of repository 387
subjectiveness 386
theory 386

relevant document
frequency 388

repository 354–356, 359, 361,
368, 386–387, 394

standard document 387
Representational State Transfer.

See REST
resource consumption 146
response time 145, 293
REST 15
restriction, cross-cutting 252
result set, scrollable 280
results per page 183
ResultTransform 192
ResultTransformer 286
rewrite 225
Rhino JavaScript 48
rollback 142, 317
root 134
rounding 91
rsync 124
Ruby 135, 157

S

SaaS 295
Saenger, Paul 126
Salton 355
SAN 119, 345

directory provider 119
typical configuration 345

sandbox 393, 399
contents of 400
maintainability 400

SAX 428
parsers 430–434

SaxExampleBridge class 432
scalability 18, 121, 142, 310, 316
ScopedAnalyzer 220–223
ScopedEntity 218, 221
SCORE 347

projection 190
score 80, 196, 198, 251

definition 354
normalized 369
normalizing 375
raw 369

Scorer 354, 377–385
similarity to JDBC 378

scoring 16
formula 364

script, continuous 126
scroll 178
scrollable result set 154, 280
ScrollableResults 178
Seam. See JBoss Seam
search

all-or-nothing database 201
approximation 44, 130
based on business needs 21
boost factor 46
by word 9
category 5
choosing a strategy 8
crawl 12–13
detailed screen 5
edit distance 231
false positive 131
full-text 12
full-text and relational

engine 17
full-text solutions 17
fuzzy 130
index scan 11
index seek 10
indexing 13
in layers 139
n-gram algorithm 130
noise 9
not-shared 286
phonetic approximation 131
precision 131
proximity 207, 231
relevance 9
root 134
score 354

INDEX 461
search (continued)
scoring 16
shared 286
simple interface is key 6
sort by relevance 12
special characters 205
stemming 14
synonyms 11, 14, 133
table scan 10
text box 7
trigram 130
words with same root,

meaning 11
words, not columns 9

Search (class) 42, 166
Search Assist 268
search engines

multistage 187
pitfalls 8

search within search 267
search.function package

warning 398
Searchable Interface, abstract

methods 380
Searcher.explain 368
SearchException 171
SearchFactory, gateway to

Lucene 328
SearchFactoryImpl 328
SearchFactoryImplementor

328, 343
searching 13

multistep process 15
slow 276
tips 275

second-level cache 155
security 258, 295

filter 288
segment 288, 292
Selenium 308
Serial API for XML. See SAX
server

cluster 346
topology 308

Service Level Agreement 308
SessionFactory 68
set (method) 100
setAllowLeadingWildcard 206,

214
default value 214

setBoost 338
setCriteriaQuery 197
setFetchSize 179
setFilter 261
setFirstResult 184, 283

setMaxClauseCount 234
default value 234

setMaxResults 184, 283
setOmitNorms 372
setParameterValues 98
setProjection 189, 285
setResultTransformer 192
setter 192
setUp 307
shard 329, 334–335
sharding 294, 313

add a new shard 302
adding shards over time 301
complete reindexing 302
configuration 118, 296
drawback 301
number of 296
payload 300
strategy 297

sharding_strategy.nbr_of_shards
296

shared
drive 321
location 315
queue 314

shared IndexReader 342
Similarity 354, 364

decode 366
encodeNorm 366
saving work 379

similarity coefficient 355, 358,
361

SimilarityDelegator 364
SimpleHTMLFormatter 403

posttag 403
pretag 403
three ways to override 404

single
point of failure 317
result 181

slave 146
optimizing (index

structure) 289
slave node 123, 314–315
slop distance. See slop factor
slop factor 207, 231–234, 414

default value 231
smart copy 316
SNOBOL 135
Snowball 135
soft reference 257, 271
Solr 126, 131

classpath 31
solr-common.jar 126
solr-core.jar 126

sort 77, 79, 194
document id 196
Luncene 194
numeric value 196
score 196
string 196

SortField 194
Soundex 131

query 209
source 122
sourceBase 122, 325, 343–346
SpanNearQuery 414
SpanQuerys 214
SpanRegexQuery 414

example of 413
SpanWeight 380
special characters 205, 226

escape 226
spellchecker 412, 415–418

methods 415
suggestions minimum 416

SpellChecker class 415
split indexes 294
splitting text 125
Spring 144, 167

Framework 30
SQL 8–9, 15, 17–18, 161

HQL extension 29
performance 10

stage 187
stale data 142
standard document

repositories 387
StandardAnalyzer 83, 128–129,

216, 223, 414
StandardFilter 128
StandardFilterKey 258–259
StandardTokenizer 128
StandardTokenizer class,

javadoc 219
static fetching strategy 175
statistics 81, 280
stemming 11, 14, 134

performance 277
stop word lists, analyzer effect

on 415
stop words 215, 309, 359, 395

default set 396
examples 215

StopFilter 128
storage area network. See SAN
store 101, 188

performance 277
property 40

Store.COMPRESS 80, 277

INDEX462
Store.YES 40, 80
stored properties 285
stream of token 125
stress testing 308
StringBridge 93
stringToObject 96
strong typing 163
Structured Query Language.

See SQL
subclass 65, 173
sumOfSquaredWeights 365, 381
surrogate key 103
Swing 30
sync 146
synchronized arrays 228
synchronous 277

clustering 311
synonym 11, 14, 133, 409–412

dictionary 133
generation 399
share reference 133
testing 410

synonym, index building 412
SynonymHelper 412
Syns2Index 409
synthetic flag 261

T

table
information spread across

several 9
row 40
scan 10

@Target 218
targeted classes 282
targetElement 108
TDirectory 344
tearDown 307
temporal filter 288
Term 226
term

boost 227
boost problem 365
buffer 220
count normalization 364
weight 356–357

term frequency 355–356, 359,
365, 367, 369–372, 394

changing 369
pairs 389
storing 389

term vectors 389
enabling 389

term_index_interval 294

termEnum.term().text() 240
TermFreqVector 390, 392
TermPositionVector 392
TermQuery 225–226, 249, 264,

365, 367, 381
extending 382

TermScorer 378–379, 381
TermVector 81
TermVector.NO 81
TermVector.WITH_OFFSETS

81
TermVector.WITH_POSITION

81
TermVector.WITH_POSITION_

OFFSETS 81
TermVector.YES 81
Terracotta 122, 124, 312, 318
test 36
test data, DOM 439
testing 36, 119, 303

in-memory 305
integration 305

TestNG 306
testScopedAnalyzerAPI unit

test 223
Text Retrieval Conference.

See TREC
text, splitting 125
textNode 438
tf. See term frequency
third party contributions 399
THIS 347

projection 190
thoughtput 293
thread 278

local variable 168
thread-safety 98, 214
tilde 44, 227

in a fuzzy query 208
in a proximity query 207

token 125
@TokenFilterDef 127
TokenFilterFactory 127
tokenization 40, 215

example 216
performance 277

tokenize 79
TOKENIZED 79
@TokenizerDef 127
TokenizerFactory 127
tokens 215, 412
TokenStream 220–222, 402
tools, troubleshooting 48
TooManyClauses 254, 264, 283

exception 234

TopDocs 380
TopFieldDocs 380
transaction 142, 153, 281

mode 293
transaction incentive 346
transactional support 316
TransactionalWorker 149
transformTuple 192
transparent

fetching 44
lazy loading 163

TREC 386–387
trec_eval_latest.tar.gz 387
TriggerTask 344–346
trigram 130
troubleshooting 48
troubleshooting tool

Luke 202
Query.toString() 224

tuning index
operations 292
structures 292

two-phase commit. See 2PC
two-way bridge. See bridge, two-

way
TwoWayStringBridge 95
type 23, 64, 66
type-safe 163, 172
typo 11, 130

U

ulimit 289
UN_TOKENIZED 40, 79
unicity 44
unique identifier 79
uniqueResult 181
unit testing. See testing
Universal Product Code.

See UPC
UPC 40
URL 90, 125, 157
users 22, 184

aceptance test 308
test 308

V

value
padding 91
rounding 91

vararg 172
vector coordinates 357
vector lengths, product of 358

INDEX 463
vector space model 354–359,
364–365

pure 364
view 71

mapping 71
objects 191

virtual machine. See VM
Visio 425
Visual Basic 208
VM 146
vowel 125

W

WAR 32
warm up 162
weak reference 271
WeakHashMap 254, 271
web application 30
Web Archive. See WAR
Web Beans 30
Weight 354, 377–384

as inner class 380
weight 360, 378
Weight Interface, method

signatures 381
WhitespaceAnalyzer 223

WildcardQuery 205–207, 234–
236, 249, 294

example 234
wildcards 206, 234

examples 206
warning 206

WildcardTermEnum 240
window size, determining 181
Windows XP 425
WITH_OFFSETS. See Field.

TermVector
WITH_POSITIONS_OFFSETS.

See Field.TermVector
WITH_POSITIONS.

See Field.TermVector
wn_s.pl 409
WNprolog-3.0.tar.gz 409
Word 90, 425
word

accentuation 126
case 126
common 126, 128
noise 128
origin 126
reference 133
separator 125

Word extractor, from custom
bridge 438

WordExtractor 427
WordNet 409

homepage 409
jar 409
lexical database 409
preliminary steps 409
website 410

Worker 149
write (index) 314
write-intensive 277

X

XA resource 143
Xerces-J 430, 439
XML 67
XML documents, size

concerns 439
XML parsing

memory usage 439
Pros and Cons ??–439
pros and cons 438

Y

Yahoo! 12
Yahoo! Search 268

	Hibernate Search
	contents
	preface
	acknowledgments
	about this book
	Part 1 Understanding Search Technology
	Chapter 1 State of the art
	1.1 What is search?
	1.1.1 Categorizing information
	1.1.2 Using a detailed search screen
	1.1.3 Using a user-friendly search box
	1.1.4 Mixing search strategies
	1.1.5 Choosing a strategy: the first step on a long road

	1.2 Pitfalls of search engines in relational databases
	1.2.1 Query information spread across several tables
	1.2.2 Searching words, not columns
	1.2.3 Filtering the noise
	1.2.4 Find by words...fast
	1.2.5 Searching words with the same root and meaning
	1.2.6 Recovering from typos
	1.2.7 Relevance
	1.2.8 Many problems. Any solutions?

	1.3 Full-text search: a promising solution
	1.3.1 Indexing
	1.3.2 Searching
	1.3.3 Full-text search solutions

	1.4 Mismatches between the round object world and the flat text world
	1.4.1 The structural mismatch
	1.4.2 The synchronization mismatch
	1.4.3 The retrieval mismatch

	1.5 Summary

	Chapter 2 Getting started with Hibernate Search
	2.1 Requirements: what Hibernate Search needs
	2.2 Setting up Hibernate Search
	2.2.1 Adding libraries to the classpath
	2.2.2 Providing configuration

	2.3 Mapping the domain model
	2.3.1 Indexing an entity
	2.3.2 Indexing properties
	2.3.3 What if I don’t use Hibernate Annotations?

	2.4 Indexing your data
	2.5 Querying your data
	2.5.1 Building the Lucene query
	2.5.2 Building the Hibernate Search query
	2.5.3 Executing a Hibernate Search query

	2.6 Luke: inside look into Lucene indexes
	2.7 Summary

	Part 2 Ending structural and synchronization mismatches
	Chapter 3 Mapping simple data structures
	3.1 Why do we need mapping, again?
	3.1.1 Converting the structure
	3.1.2 Converting types
	3.1.3 Defining the indexing strategy

	3.2 Mapping entities
	3.2.1 Marking an entity as indexed
	3.2.2 Subclasses
	3.2.3 Mapping the primary key
	3.2.4 Understanding the index structure

	3.3 Mapping properties
	3.3.1 Marking a property as indexed
	3.3.2 Built-in bridges
	3.3.3 Choosing an indexing strategy
	3.3.4 Indexing the same property multiple times

	3.4 Refining the mapping
	3.4.1 Analyzers
	3.4.2 Boost factors

	3.5 Summary

	Chapter 4 Mapping more advanced data structures
	4.1 Mapping the unexpected: custom bridges
	4.1.1 Using a custom bridge
	4.1.2 Writing simple custom bridges
	4.1.3 Injecting parameters to bridges
	4.1.4 Writing flexible custom bridges

	4.2 Mapping relationships between entities
	4.2.1 Querying on associations and full-text searching
	4.2.2 Indexing embedded objects
	4.2.3 Indexing associated objects

	4.3 Summary

	Chapter 5 Indexing: where, how, what, and when
	5.1 DirectoryProvider: storing the index
	5.1.1 Defining a directory provider for an entity
	5.1.2 Using a filesystem directory provider
	5.1.3 Using an in-memory directory provider
	5.1.4 Directory providers and clusters
	5.1.5 Writing you own directory provider

	5.2 Analyzers: doors to flexibility
	5.2.1 What’s the job of an analyzer?
	5.2.2 Must-have analyzers
	5.2.3 Indexing to cope with approximative search
	5.2.4 Searching by phonetic approximation
	5.2.5 Searching by synonyms
	5.2.6 Searching by words from the same root
	5.2.7 Choosing a technique

	5.3 Transparent indexing
	5.3.1 Capturing which data has changed
	5.3.2 Indexing the changed data
	5.3.3 Choosing the right backend
	5.3.4 Extension points: beyond the proposed architectures

	5.4 Indexing:when transparency is not enough
	5.4.1 Manual indexing APIs
	5.4.2 Initially indexing a data set
	5.4.3 Disabling transparent indexing: taking control

	5.5 Summary

	Part 3 Taming the retrieval mismatch
	Chapter 6 Querying with Hibernate Search
	6.1 Understanding the query paradigm
	6.1.1 The burdens of using Lucene by hand
	6.1.2 Query mimicry
	6.1.3 Getting domain objects from a Lucene query

	6.2 Building a Hibernate Search query
	6.2.1 Building a FullTextSession or a FullTextEntityManager
	6.2.2 Creating a FullTextQuery
	6.2.3 Limiting the types of matching entities

	6.3 Executing the full-text query
	6.3.1 Returning a list of results
	6.3.2 Returning an iterator on the results
	6.3.3 Returning a scrollable result set
	6.3.4 Returning a single result

	6.4 Paginating through results and finding the total
	6.4.1 Using pagination
	6.4.2 Retrieving the total number of results
	6.4.3 Multistage search engine

	6.5 Projection properties and metadata
	6.6 Manipulating the result structure
	6.7 Sorting results
	6.8 Overriding fetching strategy
	6.9 Understanding query results
	6.10 Summary

	Chapter 7 Writing a Lucene query
	7.1 Understanding Lucene’s query syntax
	7.1.1 Boolean queries—this and that but not those
	7.1.2 Wildcard queries
	7.1.3 Phrase queries
	7.1.4 Fuzzy queries—similar terms (even misspellings)
	7.1.5 Range queries—from x TO y
	7.1.6 Giving preference with boost
	7.1.7 Grouping queries with parentheses
	7.1.8 Getting to know the standard QueryParser and ad hoc queries

	7.2 Tokenization and fields
	7.2.1 Fields/properties
	7.2.2 Tokenization
	7.2.3 Analyzers and their impact on queries
	7.2.4 Using analyzers during indexing
	7.2.5 Manually applying an analyzer to a query
	7.2.6 Using multiple analyzers in the same query

	7.3 Building custom queries programmatically
	7.3.1 Using Query.toString()
	7.3.2 Searching a single field for a single term: TermQuery
	7.3.3 MultiFieldQueryParser queries more than one field
	7.3.4 Searching words by proximity: PhraseQuery
	7.3.5 Searching for more: WildcardQuery, PrefixQuery
	7.3.6 When we’re not sure: FuzzyQuery
	7.3.7 Searching in between: RangeQuery
	7.3.8 A little of everything: BooleanQuery
	7.3.9 Using the boost APIs

	7.4 Summary

	Chapter 8 Filters: cross-cutting restrictions
	8.1 Defining and using a filter
	8.1.1 Lucene filter
	8.1.2 Declaring a filter in Hibernate Search
	8.1.3 Applying filters to a query

	8.2 Examples of filter usage and their implementation
	8.2.1 Applying security
	8.2.2 Restricting results to a given range
	8.2.3 Searching within search results
	8.2.4 Filter results based on external data

	8.3 Summary

	Part 4 Performance and scalability
	Chapter 9 Performance considerations
	9.1 Optimizing indexing
	9.1.1 What influences indexing time for a single entity
	9.1.2 Optimizing many concurrent indexing operations
	9.1.3 Optimizing mass indexing

	9.2 Optimizing searches
	9.2.1 Optimizing the way you write queries
	9.2.2 Maximizing benefits from the caching mechanisms

	9.3 Optimizing the index structure
	9.3.1 Running an optimization
	9.3.2 Tuning index structures and operations

	9.4 Sharding your indexes
	9.4.1 Configuring sharding
	9.4.2 Choosing how to shard your data

	9.5 Testing your Hibernate Search application
	9.5.1 Mocking Hibernate Search
	9.5.2 Testing with an in-memory index and database
	9.5.3 Performance testing
	9.5.4 Testing users

	9.6 Summary

	Chapter 10 Scalability: using Hibernate Search in a cluster
	10.1 Exploring clustering approaches
	10.1.1 Synchronous clustering
	10.1.2 Asynchronous clustering

	10.2 Configuring slave nodes
	10.2.1 Preparing the backend
	10.2.2 Preparing the directory providers

	10.3 Configuring the master node
	10.3.1 Building the message consumer
	10.3.2 Preparing the master queue
	10.3.3 Preparing the directory providers

	10.4 Summary

	Chapter 11 Accessing Lucene natively
	11.1 Getting to the bottom of Hibernate Search
	11.1.1 Accessing a Lucene directory
	11.1.2 Obtaining DirectoryProviders from a non-sharded entity
	11.1.3 And now for sharding one entity into two shards
	11.1.4 Indexing two non-sharded entities
	11.1.5 Shoehorning multiple entities into one index (merging)

	11.2 Obtaining and using a Lucene IndexReader within the framework
	11.3 Writing a DirectoryProvider your way
	11.4 Projecting your will on indexes
	11.5 Summary

	Part 5 Native Lucene, scoring, and the wheel
	Chapter 12 Document ranking
	12.1 Scoring documents
	12.1.1 Introducing the vector space model
	12.1.2 Normalizing document length to level the playing field
	12.1.3 Minimizing large term count effects

	12.2 Exploring Lucene’s scoring approach and the DefaultSimilarity class
	12.2.1 DefaultSimilarity examples
	12.2.2 Query boosting

	12.3 Scoring things my way
	12.3.1 Modifying a query’s Weight class
	12.3.2 Revisiting the Scorer class
	12.3.3 Is it worth it?

	12.4 Document relevance
	12.4.1 Understanding Precision vs. Recall
	12.4.2 Measuring a system’s relevance accurately
	12.4.3 Document feedback: tell me what you want!
	12.4.4 Improving relevance with MoreLikeThis

	12.5 Summary

	Chapter 13 Don’t reinvent the wheel
	13.1 Playing in the Sandbox
	13.1.1 Making results stand out with the term Highlighter class
	13.1.2 Modifying a score the easy way with BoostingQuery
	13.1.3 But I was querying for “flick” utilizing a synonym search
	13.1.4 Implementing regular expression searches and querying for “sa.[aeiou]s.*”
	13.1.5 Utilizing a spellchecker

	13.2 Making use of third-party contributions
	13.2.1 Utilizing PDFBox to index PDF documents
	13.2.2 Indexing Microsoft Word files with POI
	13.2.3 Indexing a simple text file

	13.3 Processing XML
	13.3.1 Parsing with SAX
	13.3.2 Parsing with the DOM
	13.3.3 Pros and cons of the different methods

	13.4 Summary

	appendix: Quick reference
	Hibernate Search mapping annotations
	Hibernate Search APIs
	Lucene queries

	index
	Symbols
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y

